
Chapter 5
Grammars and L-systems with applications to
vegetation and levels

Julian Togelius, Noor Shaker, and Joris Dormans

Abstract Grammars are fundamental structures in computer science that also have
many applications in procedural content generation. This chapter starts by describ-
ing a classic type of grammar, the L-system, and its application to generating plants
of various types. It then describes how rules and axioms for L-systems can be cre-
ated through search-based methods. But grammars are not only useful for plants.
Two longer examples discuss the generation of action-adventure levels through
graph grammars, and the generation of Super Mario Bros. levels through gram-
matical evolution.

5.1 Plants are everywhere

In the previous chapter we discussed generating terrain. Almost as ubiquitous as
terrain itself is vegetation of some form: grass, trees, bushes, and other such plants
that populate a landscape. Procedurally generating vegetation is a great fit: we need
to create a huge number of artefacts (there are many trees in the forest and many
blades of grass in the lawn) that are similar to each other, recognisable, but also
slightly different from each other. Just copy-pasting trees won’t cut it,1 because
players will quickly spot that every tree is identical. An easy aspect of generating
vegetation is that, in most games, it is of little functional significance, meaning that
a botched plant will not make the game unplayable, just look a bit weird.

And in fact, vegetation is one of the success stories of PCG. Many games use pro-
cedurally generated vegetation, and there are many software frameworks available.
For example, the SpeedTree middleware has been used in dozens of AAA games.

One of the simplest and best ways to generate a tree or bush is to use a particular
form of formal grammar called an L-system, and interpret its results as drawing
instructions. This fact is intimately connected to the “self-similar” nature of plants,

1 In William Gibson’s Neuromancer, one of the main characters is busy copy-pasting trees in one
of the early chapters; Gibson seems not to have anticipated PCG.

73

74 Julian Togelius, Noor Shaker, and Joris Dormans

i.e. that the same structures can be found on both micro and macro levels. For an
example of this, take a look at a branch of a fern, and see how the shape of the branch
repeats in each sub-branch, and then in each branch of the sub-branch. Or look at a
Romanesco broccoli, which consists of cones on top of cones on top of cones, etc.
(see Figure 5.1). As we will see, L-systems are naturally suited to reproducing such
self-similarity.

Fig. 5.1: Romanesco broccoli. Note the self-similarity. (Photo credit: Jon Sullivan)

In this chapter, we will introduce formal grammars in general, L-systems in par-
ticular and how to use a graphical interpretation of L-systems to generate plants.
We will also give examples of how L-systems can be used as a representation in
search-based PCG, allowing you to evolve plants. However, it turns out that plants
are not the only thing for which formal grammars are useful. In the rest of the chap-
ter, we will explain how grammar-based systems can be used to generate quests
and dungeon-like environments for adventure games such as Zelda, and levels for
platform games such as Super Mario Bros.

5.2 Grammars

A (formal) grammar is a set of production rules for rewriting strings, i.e. turning
one string into another. Each rule is of the form (symbol(s)) → (other symbol(s)).
Here are some example production rules:

1. A→ AB
2. B→ b

Using a grammar is as simple as going through a string, and each time a symbol or
sequence of symbols that occurs in the left-hand side (LHS) of a rule is found, those
symbols are replaced by the right-hand side (RHS) of that rule. For example, if the

5 Grammars and L-systems with applications to vegetation and levels 75

initial string is A, in the first rewriting step the A would be replaced by AB by rule 1,
and the resulting string will be AB. In the second rewriting step, the A would again
be transformed to AB and the B would be transformed to b using rule 2, resulting
in the string ABb. The third step yields the string ‘ABbb and so on. A convention
in grammars is that upper-case characters are nonterminal symbols, which are on
the LHS of rules and therefore rewritten further, whereas lower-case characters are
terminal symbols which are not rewritten further.

Formal grammars were originally introduced in the 1950s by the linguist Noam
Chomsky as a way to model natural language [3]. However, they have since found
widespread application in computer science, since many computer science problems
can be cast in terms of generating and understanding strings in a formal language.
Many results in theoretical computer science and complexity theory are therefore
expressed using grammar formalisms. There is a rich taxonomy of grammars which
we can only hint at here.2 Two key distinctions that are relevant for the applica-
tion of grammars in procedural content generation are whether the grammars are
deterministic, and the order in which they are expanded.

Deterministic grammars have exactly one rule that applies to each symbol or
sequence of symbols, so that for a given string, it is completely unambiguous which
rules to use to rewrite it. In nondeterministic grammars, several rules could apply to
a given string, yielding different possible results of a given rewriting step. So, how
would you decide which rule to use? One way is to simply choose randomly. In such
cases, the grammar might even include probabilities for choosing each rule. Another
way is to use some parameters for deciding which way to expand the grammar—we
will see an example of this in the section on grammatical evolution towards the end
of the chapter.

5.3 L-systems

The other distinction of interest here is in which order the rewriting is done. Sequen-
tial rewriting goes through the string from left to right and rewrites the string as it
is reading it; if a production rule is applied to a symbol, the result of that rule is
written into the very same string before the next symbol is considered. In parallel
rewriting, on the other hand, all the rewriting is done at the same time. Practically,
this is implemented as the insertion of a new string at a separate memory location
containing only the effects of applying the rules, while the original string is left un-
changed. Sometimes, the difference between parallel and sequential rewriting can
be major.

L-systems are a class of grammars whose defining feature is parallel rewriting,
and which was introduced by the biologist Aristid Lindenmayer in 1968 explicitly
to model the growth of organic systems such as plants and algae [9]. The following
is a simple L-system defined by Lindenmayer to model yeast growth:

2 For a detailed treatment of formal grammars, and their application to domains other than lan-
guage, see [16].

76 Julian Togelius, Noor Shaker, and Joris Dormans

1. A→ AB
2. B→ A

Starting with the axiom A (in L-systems the seed strings are called axioms) the
first few expansions look as follows:

1. A
2. AB
3. ABA
4. ABAAB
5. ABAABABA
6. ABAABABAABAAB
7. ABAABABAABAABABAABABA
8. ABAABABAABAABABAABABAABAABABAABAAB

There are several interesting things about this sequence. One is the obvious reg-
ularity, which is more complex than simply repeating the same string over and over,
and certainly seems more complex than is warranted by the apparent simplicity of
the system that generates it. But also note that the rate of growth of the strings in
each iteration is increasing. In fact, the length of the strings is a Fibonacci sequence:
1 2 3 5 8 13 21 34 55 89... This can be explained by the fact that the string of step n
is a concatenation of the string of step n−1 and the string of step n−2.

Clearly, even simple L-systems have the capacity to give rise to highly complex
yet regular results. This seems like an ideal fit for PCG. But how can we move
beyond simple strings?

5.3.1 Graphical interpretation of L-systems

One way of using the power of L-systems to generate 2D (and 3D) artefacts is to
interpret the generated strings as instructions for a turtle in turtle graphics. Think
of the turtle as moving across a plane holding a pencil, and simply drawing a line
that traces its path. We can give commands to the turtle to move forwards, or to turn
left or right. For example, we could use the following key to interpret the generated
strings:

• F: move forward a certain distance (e.g. 10 pixels)
• +: turn left 90 degrees
• -: turn right 90 degrees

Such an interpretation can be used in conjunction with a simple L-system to give
some rather remarkable results. Consider the following system, consisting only of
one rule:

1. F → F +F−F−F +F

5 Grammars and L-systems with applications to vegetation and levels 77

Starting this system with the axiom F , it would expand into F +F−F−F +F
and then into F +F−F−F +F +F +F−F−F +F−F +F−F−F +F−F +
F−F−F +F +F +F−F−F +F etc. Interpreting these strings as turtle graphics
instructions, we get the sequence of rapidly complexifying pyramid-like structures
shown in Figure 5.2, known as the Koch curve.

Fig. 5.2: Koch curve generated by the L-system F → F +F−F−F +F after 0, 1,
2 and 3 expansions

5.3.2 Bracketed L-systems

While interpreting L-system-generated strings as turtle instructions allows us to
draw complex fractal shapes, we are fundamentally limited by the constraint that the
figures must be drawable in one continuous line—the whole shape must be drawn
“without lifting the pencil”. However, many interesting shapes cannot be drawn this
way. For example, plants are branching and require you to finish drawing a branch
before returning to the stem to draw the next line. For this purpose, bracketed L-
systems were invented. These L-systems have two extra symbols, [and], which
behave like any other symbols when rewriting the strings, but act as “push” and
“pop” commands to a stack when interpreting the string graphically. (The stack is
simply a first-in, last-out list.) Specifically, [saves the current position and orienta-
tion of the turtle onto the stack, and] retrieves the last saved position from the stack
and resets the turtle to that position—in effect, the turtle “jumps back” to a position
it has previously been at.

Bracketed L-systems can be used to generate surprisingly plant-like structures.
Consider the L-system defined by the single rule F → F [−F]F [+F][F]. This is in-
terpreted as above, except that the turning angles are only 30 degrees rather than 90
degrees as in the previous example. Figure 5.3 shows the graphical interpretation of
the L-system after 1, 2, 3 and 4 rewrites starting from the single symbol F . Minor
variations of the rule in this system generate different but still plant-like structures,
and the general principle can easily be extended to three dimensions by introducing
symbols that represent rotation along the axis of drawing. For a multitude of beauti-
ful examples of plants generated by L-systems see the book The Algorithmic Beauty
of Plants by Prusinkiewicz and Lindenmayer [14].

78 Julian Togelius, Noor Shaker, and Joris Dormans

geometric interpretations of L-systems were proposed in order to turn them into a
versatile tool for fractal and plant modeling. An interpretation based on turtle geome-
try, was proposed by Prusinkiewics et al. (1990). The basic idea of turtle interpreta-
tion is given below.

A state of the turtle is defined as a triplet (x, y, α), where the Cartesian coordinates
(x, y) represent the turtle's position, and the angle α, called the heading, is interpreted
as the direction in which the turtle is facing. Given the step size d and the angle in-
crement δ, the turtle can respond to the commands represented by the following
symbols:

F Move forward a step of length d. The state of the turtle changes to (x’, y’, α),
where x’ = x + d cos α and y’ = y + d sin α. . A line segment between points
(x, y) and (x, y’) is drawn.

f Move forwards a step of length d without drawing a line. The state of the tur-
tle changes as above.

+ Turn left by angle δ. The next state of the turtle is (x, y,α +δ).
- Turn left by angle δ. The next state of the turtle is (x, y,α -δ).

To represent branching structures, the L-system alphabet is extended with two
new symbols, ‘[‘ and ‘]’, to delimit a branch. They are interpreted by the turtle as
follows:

[Push the current state of the turtle onto a pushdown stack.
] Pop a state from the stack and make it the current state of the turtle.
Given a string v, the initial state of the turtle (x0, y0, α0), and fixed parameters d and

δ, the turtle interpretation of v is the figure (set of lines) drawn by the turtle in re-
sponse to the string v. This description gives us a rigorous method for mapping
strings to pictures, which may be applied to interpret strings generated by L-systems.

An example of a bracketed L-system and its turtle interpretation, obtained in deri-
vations of length n = 1 - 4, is shown in Fig. 2. These figures were obtained by inter-
preting strings generated by the following L-system:

{w: F, p: F → F[-F]F[+F][F]}.

n = 1 n = 2 n = 3 n = 4

Fig. 2. Generating a plant-like structure.Fig. 5.3: Four rewrites of the bracketed L-system F → F [−F]F [+F][F]

5.4 Evolving L-systems

As with other parameterized representations for procedural content, L-system ex-
pansions can be used as genotype-to-phenotype mappings in search-based PCG. An
early paper by Ochoa presents a method for evolving L-systems to attain particular
2D shapes [10]. She restricts herself to L-systems with the simple alphabet used
above (F +−[]), the axiom F , and a single rule with the LHS F . The genotype is
the RHS of the single rule. Ochoa used a canonical genetic algorithm with crossover
and mutation together with a combination of several evaluation functions. The fit-
ness functions relate to the shape of the phenotype: the height (“phototropism”),
symmetry, exposed surface area (“light-gathering ability”), structural stability, and
proportion of branching points. By varying the contributions of each fitness func-
tion, she showed that it is possible to control the type of the plants generated with
some precision. Figure 5.4 shows some examples of plants evolved with a combi-
nation of fitness functions, and Figure 5.5 shows some examples of organism-like
structures evolved with the same representation but a fitness function favouring sym-
metry.

5.5 Generating missions and spaces with grammars

A game level is not a singular construction, but rather a combination of two interact-
ing structures: a mission and a space [4]. A mission describes the things a player can
or must do to complete a level, while the space describes the geometric layout of the

5 Grammars and L-systems with applications to vegetation and levels 79

Fig. 6. Fitness function with component weights of: a = 100, b = 90, c = 40, d = 20, e = 30.

Finally, structures that resemble animals were also obtained with a fitness function
favoring bilateral symmetric organisms (Fig. 7).

Fig. 7. Organisms obtained with fitness function favoring bilateral symmetric structures.

4. Discussion

A model has been described that can generate complex 2D branching structures
without requiring cumbersome user specifications, design efforts, or knowledge of
algorithmic details. We argue that L-Systems constitute an adequate genetic repre-
sentation for studies which simulate natural morphological evolution. They allow the
necessary, and very convenient, distinction between genotype and phenotype, and
provide a well-defined process (morphogenesis) to generate the latter from the for-
mer. Moreover, they satisfy most of the important properties identified by Jefferson
et al. (1991) for genetic encodings in biologically motivated studies. Among them:
(a) L-systems provide a simple, uniform model of computation, because derivation
and turtle interpretation of strings constitute a well defined way to go from genotypes
to phenotypes; (b) they are syntactically closed under the designed genetic opera-
tions; and (c) they are well conditioned under genetic operators. This last requirement
is not formally defined. Essentially, it requires that “small” mutational changes
should (usually) cause “small” phenotypic changes, and that crossover usually pro-
duces offspring whose phenotypes are in some sense a “mixture” of the parents’
phenotypes, with occasional jumps and discontinuities.

The model has employed the simplest type of L-systems (D0L-systems). Further
studies may be done using complex ones, considering, for example, genotypes with
several rules, context sensitive L-systems, and inclusion of 3D morphologies

Fig. 5.4: Some evolved L-system plants. Adapted from [10]

Fig. 6. Fitness function with component weights of: a = 100, b = 90, c = 40, d = 20, e = 30.

Finally, structures that resemble animals were also obtained with a fitness function
favoring bilateral symmetric organisms (Fig. 7).

Fig. 7. Organisms obtained with fitness function favoring bilateral symmetric structures.

4. Discussion

A model has been described that can generate complex 2D branching structures
without requiring cumbersome user specifications, design efforts, or knowledge of
algorithmic details. We argue that L-Systems constitute an adequate genetic repre-
sentation for studies which simulate natural morphological evolution. They allow the
necessary, and very convenient, distinction between genotype and phenotype, and
provide a well-defined process (morphogenesis) to generate the latter from the for-
mer. Moreover, they satisfy most of the important properties identified by Jefferson
et al. (1991) for genetic encodings in biologically motivated studies. Among them:
(a) L-systems provide a simple, uniform model of computation, because derivation
and turtle interpretation of strings constitute a well defined way to go from genotypes
to phenotypes; (b) they are syntactically closed under the designed genetic opera-
tions; and (c) they are well conditioned under genetic operators. This last requirement
is not formally defined. Essentially, it requires that “small” mutational changes
should (usually) cause “small” phenotypic changes, and that crossover usually pro-
duces offspring whose phenotypes are in some sense a “mixture” of the parents’
phenotypes, with occasional jumps and discontinuities.

The model has employed the simplest type of L-systems (D0L-systems). Further
studies may be done using complex ones, considering, for example, genotypes with
several rules, context sensitive L-systems, and inclusion of 3D morphologies

Fig. 5.5: Some L-system structures evolved for symmetry. Adapted from [10]

environment. Both mission and space have their own structural qualities. For mis-
sions it is important to keep track of flow, pacing and causality, while for the space
connectedness, distance and sign posting are critical dimensions. To successfully
generate levels that feel consistent and coherent, it is important to use techniques
that can generate each structure in a way that strengthens its individual qualities
while making sure that the two structures are interrelated and work together. This
section discusses how different types of generative or transformative grammars can
be used to achieve this.

5.5.1 Graph grammars

Generative grammars typically operate on strings, but they are not restricted to that
type of representation. Grammars can be used to generate many different types of
structures: graphs, tile maps, two- or three-dimensional shapes, and so on. In this
section and the following section, we will explore how grammars can be used to
generate graphs and tile maps. These structures are useful ways to represent game
missions and game spaces that combine to make game levels.

Graphs are more useful than strings to represent missions and spaces for games,
especially when these missions and spaces need to have a certain level of sophisti-

80 Julian Togelius, Noor Shaker, and Joris Dormans

Fig. 5.6: A mission structure with two paths

cation. For example, a completely linear mission (which might be represented by a
string) might be suitable for simple and linear games, but for explorative adventure
games such as RPG dungeons you would want missions to contain lock and key puz-
zles, bonus objectives, and possibly multiple paths to lead to the level goal. Graphs
can express this type of structure more easily. For example, Figure 5.6 contains a
mission that can be solved in two different ways.

Graph grammars work quite similarly to string grammars; graph grammar rules
also have a left-hand part that identifies a particular graph construction that can be
replaced by one of the constructions in the right-hand part of the rule. However,
to make the transformation, it is important to identify each node on the left-hand
part individually and to match them with individual nodes in each right-hand part.
Figure 5.7 represents a graph grammar rule and uses numbers to identify each indi-
vidual node. When using this rule to transform a graph, the following five steps are
performed (as illustrated by Figure 5.8)3 [15]:

1. Find a subgraph in the target graph that matches the left-hand part of the rule and
mark that subgraph by copying the identifiers of the nodes.

2. Remove all edges between the marked nodes.
3. Transform the graph by transforming marked nodes into their corresponding

nodes on the right-hand side, adding a node for each node on the right-hand

3 In simple graph transformations there is no need to identify and transform individual edges in the
same way as nodes are identified and transformed. However, a more sophisticated implementation
that requires edges to be transformed rather than removed and added for each transformation can
be realised by identifying and replacing edges in the same way as nodes.

5 Grammars and L-systems with applications to vegetation and levels 81

Fig. 5.7: A graph grammar rule

Fig. 5.8: Graph grammar transformation

side that has no match in the target graph, and removing any nodes that have no
corresponding node on the right-hand side.4

4. Copy the edges as specified by the right-hand side.
5. Remove all marks.

5.5.2 Using graph grammars to generate missions

To generate a simple mission using graph grammars, it is best to start by defining
the alphabet the grammar is designed to work with. In this case the alphabet consists
of the following nodes and edges:

• Start (node marked S): the start symbol from which the grammar generates a
mission (the axiom).

• Entrance (nodes marked e): the starting place of the player.

4 The removal of nodes only works when the node to be removed is only connected to nodes that
have been marked. This is something to take into account when designing graph grammar rules.

82 Julian Togelius, Noor Shaker, and Joris Dormans

• Tasks (nodes marked t): arbitrary, unspecified tasks (here be monsters!).
• Goals (nodes marked g): a task that finishes the level when successfully com-

pleted.
• Locks (nodes marked l): a task that requires a key to perform successfully.
• Keys (nodes marked k).
• Non-terminal task nodes (nodes marked T).
• Normal edges (represented as solid arrows) connecting nodes and identifying

which task follows which.
• Unlock edges (represented as solid arrows marked with a dash) connecting keys

to locks.

With this alphabet we can construct rules that generate missions. For example,
the rules in Figure 5.9 were used to generate the sample missions in Figure 5.10.5

One thing you might notice from studying these rules is that graph grammars can
be hard to control. In the case of the rule set represented in Figure 5.9, the number
of tasks generated (by the application of the “add task” rule) can be as low as one
and has no upper limit. As soon as the Start node is removed from the graph, the
number of tasks no longer grows. One way to get a better grip on the generated
structures is not to apply rules indiscriminately, but to specify a sequence of rules so
that each rule in the sequence is applied once to one possible location in the graph.
For example, if we split up the “add task” rule from Figure 5.9 into two rules (see
Figure 5.11), the missions in Figure 5.12 are generated by applying the following
sequence of rules:6

• start rule (x1),
• add task (x6),
• add boss (x1),
• define task (x6),
• move lock (x5).

5.5.3 Breaking the process down into multiple generation steps

So far, the graph grammars are relatively simple. However, to generate anything
resembling the complexity of the mission in Figure 5.6, many more rules are re-
quired. Designing the grammars to achieve such results takes practice and patience.
A key strategy for designing successful grammars is to break the process down into

5 The rules use a special wildcard node (marked with a *) to indicate a match with any node.
Wildcards on the right-hand side of a rule never change the corresponding node in the graph being
transformed. An alternative to these wildcards is to allow rules to have edges without origin or
target node.
6 Obviously, the sequence of rules might be generated by a string grammar.

5 Grammars and L-systems with applications to vegetation and levels 83

Fig. 5.9: Mission rules

multiple steps. Trying to generate everything at once using only one grammar is a
daunting task, and next to impossible to debug and maintain.7

7 Breaking the generation down into multiple steps is in line with the approach to software en-
gineering and code generation suggested by model-driven engineering. When done right, this ap-

84 Julian Togelius, Noor Shaker, and Joris Dormans

Fig. 5.10: Generated missions

Fig. 5.11: Two new rules to replace the old “add task”

When breaking the generation process down into multiple steps, it is useful to
think of each step as a simulation of the design process. One step might generate the
overall specifications of the mission, while the next might flesh out those specifica-
tions. In game design, a successful design strategy is to start from a random set of
requirements and use your creativity to shape that random collection into a coherent
whole. Following a similar approach for breaking down the generation procedure
and designing individual grammars yields good results. In particular, designing one
simple step to create a highly randomised graph and using a second step to restruc-
ture that graph into something that makes sense from the game’s perspective is an
effective strategy to create expressive generation procedures [6].

proach leads to a flexible generation process that allows you to generate spaces from missions or
vice versa, and creates opportunities to design generic, reusable generation steps [1, 5].

5 Grammars and L-systems with applications to vegetation and levels 85

Fig. 5.12: Missions generated from the same sequence of rules

For example, we can use a single step to generate a mission of a specified length
and randomly choose between locks, keys and other tasks to fill in the spaces be-
tween the entrance and the goal. In this case we also make sure that the first task is
always a key and the last task is always a lock. Figure 5.13 and Figure 5.14 represent
the rules and a sample mission built using those rules. Note that although locks and
keys are placed, no relationship between them is established.

The next step is to extract lock and key relationships. Based on the spread of
the locks and keys over the tasks, multiple keys can be assigned to a single lock,
and vice versa. This would represent multiple levers that need to be activated to
open a single door, or a special weapon that can be used multiple times to get past
a special type of barrier. Figure 5.15 represents the rules to add these relationships,
and Figure 5.16 is a sample configuration created from the sample set in Figure 5.14.

Subsequent steps could include the movement of locks through the graph (as
we have seen in the example above), generating more details of the nature of the
locks and keys, or adding tasks of a different type. One of the advantages of using
these two steps is that two relatively simple grammars can create a large variety of
different relationships (two keys to a single lock, or keys that are reused). Getting
the same level of variation using explicit rules that create X number of keys to a
single lock would require many more rules, which are much harder to maintain.
In addition, the second step can also be executed on graphs that have been built to
different specifications. For example, the same rules can be used to create lock and
key relationships for a dungeon that has two separate paths (see Figure 5.17).

5.5.4 Generating spaces to accommodate a mission

Having a representation of a mission itself is only one step towards the generation
of levels for a game. Missions need to be transformed into spaces that the player can
actually traverse. Transforming from mission to space is one of the hardest steps in

86 Julian Togelius, Noor Shaker, and Joris Dormans

Fig. 5.13: Rules to create a random set

Fig. 5.14: Sample random set

this process. The problem comes down to generating two different, independent but
linked structures: an abstract mission that details the things a player needs to do, and
a concrete space that creates the world where the player can do these things. Below
are three strategies to deal with the problem of generating the two structures:

1. Transform from mission to space. The transition from Figure 5.14 to Figure 5.16
reflects the gradual transition from an abstract mission to a more concrete repre-

5 Grammars and L-systems with applications to vegetation and levels 87

Fig. 5.15: Rules to add lock and key relationships

88 Julian Togelius, Noor Shaker, and Joris Dormans

Fig. 5.16: Generated lock and key relationships

Fig. 5.17: Two paths to a single goal

sentation of a game space, although, in this case, the game space is still highly
abstract. However, by using automatic graph layout algorithms and sampling the
results into a tile map, it is possible to generate usable level geometry. This ap-
proach works well for games such as action-adventure games or games with a
strong narrative, where mission coherence and pacing is important. The disad-
vantage of this approach is that the difficulty of going from mission to space is
most pronounced.

2. Transform a mission into a set of instructions to build a space. Instead of di-
rectly transforming a mission structure into a space, it is possible to transform
the mission into a set of building instructions that can be used to build a space
to match the requirements. This approach has the advantage that the transition
from graphs to tiles or shapes is much easier. It also comes at a cost: it is very
difficult to generate spaces that have multiple paths leading to the same goal or
location. So this approach works best for very linear games like platformers or
certain story-driven games.

3. Build level geometry and distill a more abstract representation of the game space
from which to generate the missions. This approach inverts the problem by gen-
erating level geometry first and then setting up missions for that geometry. This
can be done by generating geometry using cellular automata, grammars, evolu-

5 Grammars and L-systems with applications to vegetation and levels 89

tion, or any other technique, then analysing the geometry to create an abstract
graph representation of the same space, which can be transformed into suitable
mission structures. This approach works well for strategic games, levels that take
place in locations that require some consistent architecture (such as castles, dwarf
fortresses, police stations, or space ships) and for levels that the player is going
to visit multiple times. The downside of this approach is that it is critical that
the geometry is generated with enough mission potential (are there doors to be
locked, bottlenecks suitable for traps, and so on?). There is also less control over
the mission than with the other two approaches.

When choosing between these strategies, or when trying to come up with another
strategy, it is important to think like a designer. The most effective way of generating
levels using a multistep process and different representations of missions and spaces
is to model the real design process. Ask yourself, how would you go about designing
a level by hand? Would you start by listing mission goals, or by sketching out a
map? What sort of changes do you make and can those changes be captured by
transformational grammars?

5.5.5 Extended example: ‘Dules

An extended example following the third strategy concludes this section. This exam-
ple details part of the PCG for the game ‘Dules, which is currently in development.
In this game, players control futuristic combat vehicles (tanks, hovercraft, and so on)
in a post-apocalyptic, alien-infested world. The players can choose missions from
a world map, after which the game generates an environment to match the location
on the map and sets up a mission based on the affordances of the environment and
specifications dictated by the current game state (who controls the environment, is
the player trying to take over or defending from alien incursion, and so on).

The content generation of ‘Dules makes use of transformation grammars that
operate on strings, graphs, and tiles. Tile grammars are very simple. They also con-
sist of rules with one left and one or more right hands where the left hand can
be replaced by one of the right-hand constructions. Like graph grammars, the tile
grammars used in ‘Dules can work with wildcards to indicate that certain tiles can
be ignored. In contrast to string and graph grammars, tile grammars cannot change
the number of tiles. In addition, tile grammars can be made to stack tiles onto each
other instead of replacing them.

The procedural content generation procedure roughly follows the steps outlined
Figure 5.18. The tile-based world map is taken as input (1), and the particular loca-
tion is selected (2). Based on the presence of particular tiles indicating vegetation,
elevation, buildings, and so on, a combination of tile grammars and cellular au-
tomata are used to create the terrain (3-7). The terrain is analysed and transformed
into an abstract representation (8). At the same time, mission specifications are gen-
erated using a string grammar (9), and these are used as building instructions to plot

90 Julian Togelius, Noor Shaker, and Joris Dormans

Fig. 5.18: The generation steps to create a level for ‘Dules

a mission onto the space graph (10).8 Finally, some extra enemies are added to the
mission (11), and all the mission-specific game objects are placed onto the same tile
map (12) and combined with the terrain to create the complete mission (13).

Almost all steps in the process are handled by grammars. Tile grammars are
used to generate the terrain; tile grammars are even used to specify different cellular
automata. String grammars are used to create the mission specification and graph
grammars are used to create the mission itself. The translation of the terrain into
the space graph is done using a specialised algorithm that distinguishes between
walkable terrain, impassible terrain, and bodies of water. Each node in (8) represents
around 100 tiles, and a reference between the node and the tiles is kept so that the
game objects may be placed in the right area during (12).

5.6 Grammatical evolution for Infinite Mario Bros. level
generation

Grammatical evolution (GE) is an evolutionary algorithm based on genetic pro-
gramming (GP) [12]. The main difference between GE and GP is in the genome

8 In this case certain graph nodes are depicted as containing other nodes. This is just a depiction:
for the implementation and the grammars, containment is simply a special type of edge that is
rendered differently.

5 Grammars and L-systems with applications to vegetation and levels 91

representation; while a tree-based structure is used in GP, GE relies on a linear
genome representation. Like general genetic algorithms (GAs), GE applies fitness
calculations for every individual and then applies genetic operators to produce the
next generation.

The population of the evolutionary algorithm consists of variable-length integer
vectors, initialised randomly. The syntax of possible solutions is specified through
a context-free grammar. GE uses the grammar to guide the construction of the phe-
notype output. The context-free grammar employed by GE is usually written in
Backus-Naur form (BNF). Because of the use of a grammar, GE is capable of gen-
erating anything that can be described as a set of rules such as mathematical for-
mulas [18], programming code, game levels [17] and physical and architectural de-
signs [2, 13]. GE has been used intensively for automatic design [8, 2, 13, 7, 11], a
domain where it has been shown to have a number of advantages over more tradi-
tional optimisation methods.

5.6.1 Backus-Naur form

Backus-Naur form (BNF) is common format for expressing grammars. A BNF
grammar G = {N,T,P,S} consists of terminals, T , non-terminals, N, production
rules, P, and a start symbol, S. As in any grammar, non-terminals can be expanded
into one or more terminals and non-terminals through applying the production rules.
An example BNF to generate valid mathematical expressions is given in Figure 5.19.

(1) <exp> ::= <exp> <op> <exp>
| (<exp> <op> <exp>)
| <var>

(2) <op> :: = + | - | * | /
(3) <var> ::= X

Fig. 5.19: Illustrative grammar for generating mathematical expressions

Each chromosome in GE is a vector of codons. Each codon is an integer used
to select a production rule from the BNF grammar in the genotype-to-phenotype
mapping. A complete program is generated by selecting production rules from the
grammar until all non-terminals are replaced. The resulting string is evaluated ac-
cording to a fitness function to give a score to the genome. To better understand the
genotype-to-phenotype mapping, we will give a brief example.

Consider the grammar in Figure 5.19 and the individual genotype integer string
(4,5,8,11). We begin the processing of the mapping from the start symbol < exp >.
There are three possible productions; to decide which production to choose, we use
the first value in the input genome and apply the mapping function 4%3 = 1, where
3 is the number of possible productions. The result from this operation indicates
that the second production should be chosen, and < exp > is replaced with (<

92 Julian Togelius, Noor Shaker, and Joris Dormans

exp >< op >< exp >). The mapping continues by using the next integer with the
first unmapped symbol in the mapping string; the mapping string then becomes (<
var >< op >< exp >) through the formula 5%3 = 2. At this step < var > has only
one possible outcome and there is no choice to be made, hence, X is inserted without
reading any number from the genome. The expression becomes (X < op>< exp>).
Continuing to read the codon values from the example individual’s genome, < op >
is mapped to + and < exp > is mapped to X through the two formulas, 8%4 = 0
and 11%3 = 2, respectively. This results in the expansion (X +X).

During the mapping process, it is possible for individuals to run out of genes, in
which case GE either declares the individual invalid by assigning it a penalty fitness
value, or it wraps around and reuses the genes.

5.6.2 Grammatical evolution level generator

Shaker et al. [17] used grammatical evolution to generate content for Infinite Mario
Bros. It has a number of advantages for this task: it provides a simple way of de-
scribing the structure of the levels; it enables an open-ended structure where the
design and model size are not known a priori; it enables the design of aesthetically
pleasing levels by exploring a wide space of possibilities since the exploratory pro-
cess is not constrained or biased by imagination or known solutions; it allows easy
incorporation of domain knowledge through its underlying grammatical representa-
tion, which permits level designers to maintain greater control of the output; finally,
it is easily generalised to different types of games.

The following section summarises the work of Shaker et al. [17]. We start by
presenting the design grammar used by GE to specify the structure of IMB levels;
after that we present how GE was employed to evolve playable levels for the game.

5.6.2.1 Design grammar for content representation

As mentioned earlier, GE uses a design grammar (DG), written in BNF, to represent
solutions (in our case a level design). Several methods can be followed to specify
the structure of the levels in a design grammar, but since the grammar employed
by GE is a context-free grammar, this limits the possible solutions available. To
accommodate this constraint, and to keep the grammar as simple as possible, the
work here adds game elements to the 2D level array regardless of the positioning
of other elements. With this solution, however, arise a number of conflicts in level
design that must be resolved. The next section will discuss this conflict-resolution
issue and a solution in detail.

The internal representation of the levels in IMB is a two-dimensional array of
objects, such as brick blocks, coins and enemies. The levels are generated by plac-
ing a number of chunks in the two-dimensional level map. The list of chunks that
was considered includes platforms, gaps, stairs, piranha plants, bill blasters, boxes

5 Grammars and L-systems with applications to vegetation and levels 93

(a) Flat platform (b) Hills (c) Gap (d) Bill blaster (e) Piranha plant

(f) Koopa (g) Goomba (h) Boxes (i) Coins

Fig. 5.20: The chunks used to construct Infinite Mario Bros. levels

(blocks and brick blocks), coins, goombas and koopas. Each of these chunks has a
distinguishable geometry and properties. Figure 5.20 presents the different chunks
that collectively constitute a level. The level initially contains a flat platform that
spans the whole x-axis; this explains the need to define a gap as one of the chunks.

A design grammar was specified that takes into account the different chunks. In
order to allow more variations in the design, platforms and hills of different types
were considered such as a blank platform/hill, a platform/hill with a bill blaster, and
a platform/hill with a piranha plant.

Variations in enemy placements were achieved by (1) constructing the physical
structure of the level, (2) calculating the possible positions at which an enemy can be
placed (this includes all positions where a platform was generated) and (3) placing
each generated enemy in one of the possible positions.

The design grammar constructed can be seen in Figure 5.21. A level is con-
structed by placing a number of chunks, each assigned two or more properties; the
x and y parameters specify the coordinates of the chunk starting position in the 2D
level array and are limited to the ranges [5, 95] and [3, 5], respectively. These ranges
are constrained by the dimensions of the level map. The first and last five blocks in
the x dimension are reserved for the starting platform and the ending gate, while
the y values have been constrained in a way that ensures playability (the existence
of a path from the start to the end position) by placing all items in areas reachable
by jumping. The wg parameter specifies the width of gaps that ensures the ability
to reach the other edge, w stands for the width of a platform or a hill, wc defines
the number of coins, and h indicates the height of tubes, piranha plants, or the bill
blaster. This height is also constrained to the range [3, 4], ensuring that tubes and
bill blasters can be jumped over.

5.6.2.2 Conflict resolution and content quality

There are a number of conflicts inherent in the design grammar. Each generated
chunk can be assigned any x and y values from the ranges [5, 95] and [3, 5], re-
spectively, depending on the genotype. This means it is likely there will be an over-

94 Julian Togelius, Noor Shaker, and Joris Dormans

<level> ::= <chunks> <enemy>
<chunks> ::= <chunk> |<chunk> <chunks>
<chunk> ::= gap(<x>,<y>, <wg>,<wbe f ore>,<wa f ter>)

| platform(<x>,<y>,<w>)
| hill(<x>,<y>,<w>)
| blaster_hill(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)
| tube_hill(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)
| coin(<x>,<y>,<wc>)
| blaster(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)
| tube(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)
| <boxes>

<boxes> ::= <box_type> (<x>,<y>)2 | ...
| <box_type> (<x>,<y>)6

<box_type> ::= blockcoin | blockpowerup
| brickcoin | brickempty

<enemy> ::= (koopa | goomba)(<pos>) 2 | ...
| (koopa | goomba)(<pos>) 10

<x> ::= [5..95]
<y> ::= [3..5]
<wg> ::= [2..5]
<wbe f ore> ::= [2..5]
<wa f ter> ::= [2..5]
<w> ::= [2..6]
<wc> ::= [2..6]
<h> ::= [3..4]
<pos> ::= [0..100000]

Fig. 5.21: The design grammar employed to specify the design of the level. The
superscripts (2, 6 and 10) are shortcuts specifying the number of repetition

lap between the coordinates of the generated chunks. For example, hill(65,4,5)
hill(25,4,4) blaster hill(67,4,4,4,3) coin(22,4,6) plat f orm(61,4,4) is a phe-
notype that has been generated by the grammar and contains a number of con-
flicts: e.g. hill(65,4,5) and blaster hill(67,4,4,4,3) were assigned the same y
value, and overlapping x values; another conflict occurs between hill(25,4,4) and
coin(22,4,6) as the two chunks also overlap.

To resolve these conflicts, a manually defined priority value is assigned to each
chunk. Hills with bill blasters or piranha plants are given the highest priority, fol-
lowed by blank hills, platforms with enemies (bill blasters or piranha plants) come
next then blank platforms and finally come coins and blocks with the lowest pri-
ority. After generating a genotype (with possible conflicts), a post-processing step
is applied in which the chunks are arranged in descending order according to their
priorities, coordinates and type. The resulting ordered phenotype is then scanned
and whenever two overlapping chunks are detected, the one with the higher priority
value is maintained and the other is removed. Nevertheless, to allow more diver-

5 Grammars and L-systems with applications to vegetation and levels 95

(a)

(b)

(c)

Fig. 5.22: Example levels generated by the GE-generator using the design grammar
in Figure 5.21

sity, some of the chunks are allowed to overlap such as hills of different heights
(Figure 5.20b), and coins or boxes with hills. Without this refinement, most levels
would look rather flat and uninteresting.

A relatively simple fitness function is used to measure content quality. The main
objective of the fitness function is to allow exploration of the design space by creat-
ing levels with an acceptable number of chunks, giving rich design and variability.
Thus, the fitness function used is a weighted sum of two normalised measures: the
first one, fp, is the difference between the number of chunks placed in the level
and a predefined threshold that specifies the maximum number of chunks that can
be placed. The second, fc, is the number of different conflicting chunks found in
the design. Apparently, the two fitness functions partially conflict since optimising
fp by placing more chunks implicitly increases the chance of creating conflicting
chunks (fc). Some example levels generated are presented in Figure 5.22.

5.7 Lab exercise: Create plants with L-systems

In this lab exercise, you will implement a simple bracketed L-system to generate
plants. Use an L-system to generate your plants and a turtle graphics program to
draw them. You will be given a software package that contains three main classes:
LSystem, State and Canvas. Your main work will be to implement the two main
methods in the LSystem class:

public void expand(int depth)
public void interpret(String expression)

The L-system has an alphabet, axioms, production rules, a starting point, a start-
ing angle, a turning angle and a length for each step. The expand method is used to

96 Julian Togelius, Noor Shaker, and Joris Dormans

Fig. 5.23: Example trees generated with an L-system using different instantiation
parameters

expand the axiom of the L-system a number of times specified by the depth param-
eter. After expansion, the system processes the expansion and visualises it through
the interpret method. The result of each step is drawn on the canvas. Since the L-
system will be in a number of different states during expansion, a State class is
defined to represent each state. An instance of this class is made for each state of
the L-system and the variables required for defining the state are passed on from the
L-system to the state; these include the x and y coordinates, the starting and turning
angles and the length of the step. The L-system is visualised by gradually drawing
each of its states.

The State and the Canvas classes are helpers, and therefore there is no need
to modify them. The Canvas class has the methods required for simple drawing
on the canvas and it contains the main method to run your program. In the main
method, you can instantiate your L-system, define your axiom and production rules
and the number of expansions. Figure 5.23 presents example L-systems generated
using the following rules: (F,F,F→ FF− [−F +F +F]+[+F−F−F]) (left) and
(F, f ,(F → FF, f → F − [[f] + f] +F [+F f]− f)) (right). Note that the rules are
written in the form G = (A,S,P), where A is the alphabet, S is the axiom or starting
point and P is the set of production rules.

You can use the same software to draw fractal-like forms such as the ones pre-
sented in Figure 5.24. Some simple example rules that can be used to create rel-
atively complex shapes are the following: (F,F +F +F +F,(F +F +F +F →
F +F +F +F,F → F +F−F−FF +F +F−F)) (left), (F,F ++F ++F,F →
F−F ++F−F) (middle) and (F, f ,(f → F− f −F,F → f +F + f)) (right).

5 Grammars and L-systems with applications to vegetation and levels 97

Fig. 5.24: Example fractals generated with an L-system using different production
rules

5.8 Summary

Grammars can be useful for creating a number of different types of game content.
Perhaps most famously, they can be used to create plant structures; plants gener-
ated by grammars are now commonplace in commercial games and game engines.
But grammars can also be used to generate levels and physical structures of var-
ious kinds and mission structures. Grammars are characterised by expanding an
axiom through production rules. The L-system is a simple grammar characterised
by simultaneous expansion of symbols, which can generate strings with repeating
structure. If the symbols in the string are interpreted as instructions for a movable
“pen”, the results of the grammar can be interpreted as geometrical patterns. Adding
bracketing to a grammar makes it possible to create strings that can be interpreted
as branching structures, e.g. trees. Both grammars and rules can be created through
search-based methods such as evolution, making automatic grammar design possi-
ble. Graph grammars and space grammars extend the basic idea of grammars beyond
strings, and can be useful for generating level structures or quest structures.

References

1. Brown, A.: An introduction to model driven architecture (2004). URL
http://www.ibm.com/developerworks/rational/library/3100.html

2. Byrne, J., Fenton, M., Hemberg, E., McDermott, J., O’Neill, M., Shotton, E., Nally, C.: Com-
bining structural analysis and multi-objective criteria for evolutionary architectural design.
Applications of Evolutionary Computation pp. 204–213 (2011)

3. Chomsky, N.: Three models for the description of language. IRE Transactions on Information
Theory 2(3), 113–124 (1956)

4. Dormans, J.: Adventures in level design: Generating missions and spaces for action adventure
games. In: Proceedings of the Foundations of Digital Games Conference (2010)

5. Dormans, J.: Level design as model transformation: A strategy for automated content genera-
tion. In: Proceedings of the Foundations of Digital Games Conference (2011)

6. Dormans, J., Leijnen, S.: Combinatorial and exploratory creativity in procedural content gen-
eration. In: Proceedings of the Foundations of Digital Games Conference (2013)

98 Julian Togelius, Noor Shaker, and Joris Dormans

7. Hemberg, M., O’Reilly, U.: Extending grammatical evolution to evolve digital surfaces with
Genr8. In: Proceedings of the 7th European Conference on Genetic Programming, pp. 299–
308 (2004)

8. Hornby, G., Pollack, J.: The advantages of generative grammatical encodings for physical
design. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 600–607
(2001)

9. Lindenmayer, A.: Mathematical models for cellular interactions in development I. filaments
with one-sided inputs. Journal of Theoretical Biology 18(3), 280–299 (1968)

10. Ochoa, G.: On genetic algorithms and Lindenmayer systems. In: Parallel Problem Solving
from Nature, pp. 335–344. Springer (1998)

11. O’Neill, M., Brabazon, A.: Evolving a logo design using Lindenmayer systems, postscript &
grammatical evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 3788–3794 (2008)

12. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computa-
tion 5(4), 349–358 (2001)

13. O’Neill, M., Swafford, J., McDermott, J., Byrne, J., Brabazon, A., Shotton, E., McNally, C.,
Hemberg, M.: Shape grammars and grammatical evolution for evolutionary design. In: Pro-
ceedings of the 11th Conference on Genetic and Evolutionary Computation, pp. 1035–1042
(2009)

14. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer (1990)
15. Rekers, J., Schürr, A.: A graph grammar approach to graphical parsing. In: Proceedings of the

11th IEEE Symposium on Visual Languages, pp. 195–202 (1995)
16. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3: Beyond Words.

Springer (1997)
17. Shaker, N., Nicolau, M., Yannakakis, G.N., Togelius, J., O’Neill, M.: Evolving levels for Su-

per Mario Bros. using grammatical evolution. In: Proceedings of the IEEE Conference on
Computational Intelligence and Games, pp. 304–311 (2012)

18. Tsoulos, I., Lagaris, I.: Solving differential equations with genetic programming. Genetic
Programming and Evolvable Machines 7(1), 33–54 (2006)

