
Chapter 8
ASP with applications to mazes and levels

Mark J. Nelson and Adam M. Smith

Abstract Answer set programming (ASP) is an approach to logic programming,
where constraints and logical relations are declared in a Prolog-like language. ASP
solvers can be used to find world configurations that satisfy constraints expressed in
this language. Interestingly, many forms of content generation can be formulated as
constraint-solving problems, and thus expressed in ASP. For example, maps can be
represented as the position of all objects in the map, and the space of permissible
maps limited by constraints expressed in the language. This chapter discusses how
to use ASP for generating different types of mazes, using generation of dungeons as
a running example.

8.1 What to generate and how to generate it

A common theme underlying procedural content generation is that we need to be
able to specify both what we want our generated content to be like, and how to
generate it. Sometimes these two parts are tightly intertwined. In the constructive
methods of Chapter 3 and the fractal and noise methods of Chapter 4, we can pro-
duce different kinds of output by tweaking the algorithms until we’re satisfied with
their output. But if we know what properties we’d like generated content to have, it
can be more convenient to directly specify what we want, and then have a general
algorithm find content meeting our criteria.

The search-based framework introduced in Chapter 2 is one common way of
making a content-generation algorithm general, so we can tell it what kind of con-
tent we want, and have it search for content meeting our request. An evaluation
function specifies the properties we’d like the content to have, by numerically rating
the quality of generated content according to whatever criteria we choose. A search
algorithm then searches a space of content encodings to find highly rated content.

Evaluation functions summarize content quality into a single numerical rating.
Then the search process, such as an evolutionary algorithm, finds content that rates
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highly on that scale. Elements of an evaluation function may include both hard
constraints—things that the content absolutely must have, such as a level being
passable—and softer preferences. Evaluation of content quality may also depend on
the game’s mechanics. For example, whether a level is passable can depend on how a
player can move, what items are available for the player’s use, how enemies move,
and so on; in search-based PCG this is often addressed by simulating gameplay
when compute the rating.

In this chapter we look at another way of dealing with the what and how of PCG.
We specify what we want our generated content to be like through answer set pro-
gramming (ASP), a logic-programming approach. We then do the actual generation
by passing the program to an ASP solver, which outputs content that meets the
specifications of our program.

8.2 Game logic and content constraints

Instead of using a content encoding and a numerical evaluation function, here we
define the logic of a content domain, along with constraints on the properties that
we want the generated content to exhibit [9].

The logic of a game content domain is its structure and game mechanics. A grid-
based map has a structure in which tiles are arrayed horizontally and vertically,
with walls, items, structures, or other entities placed on tiles. Mechanics specify
how gameplay takes place on this grid. Common mechanics include: a player starts
somewhere, can move to any unoccupied adjacent square, can pick up certain kinds
of items, can break certain kinds of barriers (this might require an item), etc. In short,
how a game works makes up its logic. This logic can be encoded in computational
logic [7], which means we will be able to use it to guide PCG. We don’t encode how
the entire game works, to be clear, just how the game works to the extent that it’s
relevant to generating the content we want.

Once we have the logic of a domain, we can write down properties that we want
all generated content to have, by writing constraints that refer to the game’s logic.
For example: a level must have a valid path through it. What is a valid path? A
sequence of moves that a player can legally make. The sequence of moves the player
can legally make in turn depends on the logic of the particular game’s world and
rules. Some other possible constraints: all valid paths should be at least a certain
minimum length, the exit and entrance must be at opposite edges of the map, and
so on. We can add and remove these properties, as we think of them: perhaps the
player shouldn’t be able to get through a level without using at least one item (if
our game has items). Maybe at least one jump should be required, or there should
be a boss placed somewhere that can’t be avoided. Specifying these constraints will
often be done iteratively. Once we generate a few example levels, we may see things
we didn’t expect, and modify the set of desired properties accordingly.

The logic and constraints serve the role that the encoding and evaluation function
serve in search-based PCG, but in a more explicit, symbolic form, where we’ve
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written out the logic of a game world and the properties we’d like in the generated
content. The logic and constraints are then passed to a tool, called a solver, which
solves the logic problem: it finds content that conforms to the logic of the game
world and satisfies all the constraints we’ve specified. This approach is particularly
useful when many of our desired properties are hard constraints, and may depend
(perhaps in complex ways) on the game’s mechanics.

8.3 Answer set programming

To apply the approach we just described in practice, we need a specific language in
which to encode the game logic and constraints, and a solver for that language. In
this chapter, we use answer set programming (ASP), a logic-programming approach
with good support for constrained generation. While there are other possible ways to
do PCG with constraint solving [6], answer set programming has a well-developed
programming language with reliable existing tools, and which can be used to specify
both game logic and constraints within the same language. Therefore it serves as
a good general-purpose choice for programming logic- and constraint-based PCG
systems.1

Before we jump into using ASP for a content generation task, we will first in-
troduce some basic syntax. Answer set programs are expressed in a language called
AnsProlog [1, 4], a language that visually resembles Prolog while having semantics
that are more directly relatable to SAT and MAX-SAT problems.

The simplest ASP construct is a fact. A fact is something we declare to be true.
It can be an atomic fact, which is simply a symbol that is declared true:
game_over.
gravity_enabled.

Alternatively, a fact can be specified using predicates, which take parameters. A
predicate can be declared true for specific choices of parameters:
max_jump(3).
contains((2,2),wall).

So far, this is just a bare list of facts. We could encode a whole level this way,
specifying the locations of walls, items, etc. But the interesting part comes when we
add rules in addition to lists of facts. Rules specify that we can infer certain facts
from others. This encodes dependencies between game elements, and also lets us
start specifying dynamic elements of the game, such as game mechanics.

For example, let’s say that tiles containing walls are impassable, in general. We
could specify a list of facts listing explicitly which tiles are impassable. But we’d
rather just say that every tile with a wall is impassable.

In conventional mathematical logic notation, we want a rule like this:

∀Tile, contains(Tile,wall) =⇒ impassable(Tile)

1 ASP has also been used for content generation outside of games, notably to generate music [2].
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Read left to right, this says: for all tiles, if the tile contains a wall, then the tile is
impassable.

In AnsProlog, this rule would be written like so:
impassable(Tile) :- contains(Tile,wall).

The symbol :- in AnsProlog is a leftward-pointing version of the implication
arrow, following the convention in most programming languages that the assignment
operator assigns from the right-hand side to the left. Tile is a logic variable. In
AnsProlog, variables start with a capital letter, while predicates and atoms start with
a lowercase letter. Variables in AnsProlog are implicitly universally quantified, so
the “for-all” (∀) in the mathematical version doesn’t appear in the AnsProlog code.

Once we have facts and rules, that would in principle be enough to constructively
generate content. However, it is typically difficult to write a set of facts and rules so
that only content we want is derived from the rules, placing everything in exactly
the right combination of places and never generating broken or undesirable output.
Instead, we usually generate content in two steps. First, we constructively define a
design space. Then we specify constraints that exclude unwanted parts of the design
space.

The initial, larger design space is created by using the AnsProlog construct of
choice rules. A choice rule specifies that the solver has an arbitrary choice in how
to assign certain facts—as long as they meet some numerical constraints, and any
other constraints that we might add later. The following choice rule specifies that
there are between 5 and 10 walls in the level, but it doesn’t specify exactly how
many, or on which tiles they’re located:
5 { contains(T,wall) : tile(T) } 10.

More precisely, this syntax says that, if we construct a big collection of candidate
contains(T,wall) facts, for every possible T that is a tile, then the size of this set
is between 5 and 10. If we have no desire to constrain the set size, we can leave off
one or both of these numbers. The following choice rule simply says that a level has
any number of walls:
{ contains(T,wall) : tile(T) }.

A program consisting of only the above rule produces a generative space of lev-
els that contains any possible arrangement of walls on a grid. Of course, interesting
levels require more than this. Besides adding numerical constraints on how the ASP
solver makes its choices, we can exclude unwanted choices by adding different con-
straints that the solver must take into account. A standalone constraint is written like
a rule, but has nothing on the left-hand side of the :- syntax. A solution that matches
the right-hand side of the rule will be rejected as an invalid choice. The following
example rule excludes any generated map that has a wall at (1,1):
:- contains((1,1),wall).

By intermixing rules that create generative spaces, and others that prune them
back down to interesting subsets, we can achieve strong control over the kind of
content that is generated.
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AnsProlog code is put into files with the conventional extension .lp (for “logic
program”), and then passed to the solver. In this chapter we use the solver clingo
from the University of Potsdam, a free and actively maintained AnsProlog solver
which is part of the Potassco project of answer-set-programming tools [5].2

Now that we have the basic machinery of AnsProlog, we can define facts and
implications, specify design spaces as free choices, and specify constraints rejecting
some of those choices. We’ll walk through some complete examples to show how
to build and modify procedural level generators using this method.

8.4 Perfect mazes

Using our newfound ability to reason over all possible logical worlds, we will start
with a simple maze generation problem. In particular, we will look at generating
perfect mazes. A perfect maze (which may or may not actually be a desirable maze)
is one in which every location is reachable while there are no closed loops. In effect,
perfect mazes are trees that have been embedded into a fixed space, usually a grid.

One way to represent a tree embedded in a grid is to assign each tile in the grid a
parent pointer that points to one of its adjacent cells. If the choice of parent pointers
actually forms a tree, then it will be possible to traverse these pointers back to the
root of the tree no matter where we start.

Let’s begin by establishing a representational vocabulary for our mazes. Fig-
ure 8.1 is a self-contained AnsProlog program that uses a choice rule to assign
each X/Y location a unique parent direction. This choice rule can produce facts
like parent(5,7,0,-1) which might read that the tile at location (5,7) has (5,6)
for its parent. The location (1,1) will later function as the root of our tree, so we
don’t assign it a parent direction.

#const width = 5.
dim(1..width).

1 { parent(X,Y, 0,-1),
parent(X,Y, 1, 0),
parent(X,Y,-1, 0),
parent(X,Y, 0, 1) } 1 :-
dim(X), dim(Y), (X,Y) != (1,1).

Fig. 8.1: maze-core.lp

With just a single interesting rule, we can already begin visualizing the output of
the design space we are representing so far. Using a command like the following,
which uses the answer-set-solving system from the Potassco project (discussed in

2 The code here is tested with clingo version 3.0.4. Most of the examples will work with minor
syntax changes on clingo 4, but the --reify feature used in Section 8.6 hasn’t yet been added to
clingo 4, so we recommend sticking with clingo 3 when trying out the examples in this chapter.
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the previous section), we can generate previews of possible mazes. Rendered exam-
ples from our program so far can be seen in Figure 8.2.
clingo maze-core.lp --rand-freq=1

Fig. 8.2: When each tile in the maze is assigned a random parent, typical outputs
show several disconnected components. Some tiles on the edges of the maze even
point to a parent cell outside of the maze

To make sure we only see valid trees, we should enforce the property that the root
is reachable from every tile on the grid. Figure 8.3 uses a fact, a recursive rule, and
an integrity constraint to accomplish this. The linked(X,Y) property holds trivially
for the root of the tree. Any tile that has a parent that is linked is linked as well.
Finally, if there is some tile which does not have the linked property, something
is wrong with the current assignment of parent directions and this possible world
should be rejected.

linked(1,1).
linked(X,Y) :- parent(X,Y,DX,DY), linked(X+DX,Y+DY).

:- dim(X;Y), not linked(X,Y).

Fig. 8.3: maze-reach.lp

After adding these rules, we can sample examples of all and only those perfect
mazes by running a command such as the following. Example outputs are shown in
Figure 8.4.
clingo maze-core.lp maze-reach.lp

So far, we have used only hard constraints: tiles have exactly one parent, and
every tile must be linked to the root. We can express soft constraints in AnsProlog
as well by defining optimisation criteria. As an example of this for the primitive
domain of mazes, let us suppose that vertical links in the maze are undesirable and
that their use should be minimized. To accomplish this, the rules in Figure 8.5 de-
fine two ways of detecting a vertical link (an upward or downward parent), and the
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Fig. 8.4: After adding the reachability constraint for each tile, the desired tree net-
work appears. This program captures exactly the set of all perfect mazes of a given
width

minimize statement tells the solver that solutions which use the fewest vertical links
are those that interest us. Although such statements are typically read as implying
an optimality constraint (that only globally optimal solutions should be emitted),
most answer set solvers will emit a series of answer sets they find along the way to
finding one such optimal solution. By stopping the solver once it gets close enough
or runs for enough time, we can implement approximate optimisation within this
framework as well.

% soft style preferences : minimize vertical links
vertical(X,Y) :- parent(X,Y,0, 1).
vertical(X,Y) :- parent(X,Y,0,-1).
#minimize { vertical(X,Y) }.

Fig. 8.5: maze-bias.lp

Including the rules defining our bias against vertical links, a command like the
following will allow us to sample maze designs that optimise our working evaluation
criterion. Example outputs are show in Figure 8.6.
clingo maze-core.lp maze-reach.lp maze-bias.lp

8.5 Playable dungeons

Mazes are an overly simplistic example of how to carry out content generation using
ASP because they can be represented with only a single kind of choice. As a slightly
richer example, this section looks at generating simple dungeon maps in which a few
different types of sprites are stamped down onto the familiar two-dimensional grid.

Our task will be to design a level in which the player character starts in the top-
left of the grid, finds a gem in the wall of the dungeon, carries it to a central altar,
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Fig. 8.6: Using the count of horizontal connections as an evaluation function, we
can sample several alternative designs with a globally optimal score

where it is used to magically unlock the exit, and then walks out of that exit in the
bottom right. We would like every generated level to be guaranteed to be solvable
as well as to have some basic control over the pacing of the level.

To begin, examine Figure 8.7. This program establishes a vocabulary of dimen-
sion values, tiles as value pairs, and adjacency between pairs of tiles. In the character
movement model we intend to capture, tiles that are one step up/down/left/right of
each other are considered adjacent. A mathematical statement of this is that tile pairs
with a coordinate distance of one are considered adjacent. The key part of this pro-
gram is the choice rule, which states that every tile has between zero and one sprites
from the set of walls, the gem, and the altar. Because we know we only want to see
maps with one gem and one altar, we immediate add integrity constraints that reject
those maps for which there isn’t exactly one of each.

#const width=10.

param("width",width).

dim(1..width).

tile((X,Y)) :- dim(X), dim(Y).

adj((X1,Y1),(X2,Y2)) :-
tile((X1,Y1)),
tile((X2,Y2)),
#abs(X1-X2)+#abs(Y1-Y2) == 1.

start((1,1)).
finish((width,width)).

% tiles have at most one named sprite
0 { sprite(T,wall;gem;altar) } 1 :- tile(T).

% there is exactly one altar and one gem in the whole level
:- not 1 { sprite(T,altar) } 1.
:- not 1 { sprite(T,gem) } 1.

Fig. 8.7: level-core.lp
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Starting with these core rules, commands like the following will generate outputs
like those seen in Figure 8.8.
clingo level-core.lp --rand-freq=1
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Fig. 8.8: A random result given rules that capture the basic representational vocab-
ulary for the dungeon generation problem. A few walls (W, gray) are present, along
with exactly one gem (G, green) and one altar (A, orange)

Our preliminary outputs hardly resemble interesting dungeon maps. There are
many interesting maps lurking in the space we have defined, but they are hard to
spot amongst the multitude of other combinations in the space. To zoom in on those
maps of stylistic interest, we’ll use a mixture of rules and integrity constraints to
discard undesirable alteratives. A dungeon with only a sparse set of walls doesn’t
feel like a dungeon. A single wall sprite takes on the character of a wall when it
is placed contiguously with other wall sprites. An altar should be surrounded by a
few tiles of blank space, and gems should be well attached to surrounding walls.
Examine Figure 8.9 for a one-line encoding of each of these concerns.

% style : at least half of the map has wall sprites
:- not (width*width)/2 { sprite(T,wall) }.

% style : altars have no surrounding walls for two steps
0 { sprite(T3,wall):adj(T1,T2):adj(T2,T3) } 0 :- sprite(T1,altar).

% style : altars have four adjacent tiles (not up against edge of map)
:- sprite(T1,altar), not 4 { adj(T1,T2) }.

% style : every wall has at least two neighbouring walls (no isolated rocks and spurs )
2 { sprite(T2,wall):adj(T1,T2) } :- sprite(T1,wall).

% style : gems have at least three surrounding walls ( they are stuck in a larger wall )
3 { sprite(T2,wall):adj(T1,T2) } :- sprite(T1,gem).

Fig. 8.9: level-style.lp

With this addition, commands like the following can be used to sample stylis-
tically valid maps such as those in Figure 8.10. Note that while the levels look
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reasonable locally, they are still completely undesirable on the basis that they do not
support the kind of play we want—there’s often not even a path from the gem to the
altar, let alone from the entrance to the exit.
clingo level-core.lp level-style.lp
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Fig. 8.10: After adding style constraints, there are many walls, the altar is sur-
rounded by open space, and the gem is surrounded by walls on three sides. The fact
that the gem is walled off is a clue that we have not yet modelled a key contraint:
the level must be playable

The general strategy for ensuring we only generate playable maps is conceptually
simple: generate a reference solution along with the level design. If a map contains
a valid reference solution, we have a proof (by existence) that it is solvable. Even
though we won’t be representing the reference solution in our final output involving
sprites on tiles, we can use the same language constructs as before to describe and
constrain the space of possible solutions for a working map design.

Examine the rules in Figure 8.11. The key predicate is touch(Tile,State)

which describes which tiles we expect the player character to touch in which game-
play state on the path to solving the level. To capture the sequence of picking up the
gem, bringing it to the altar, and then exiting the level, we define three numbered
states. The first rule tells us that the player will touch the start tile in state 1. From
here, a series of choice rules say that touching one tile allows the player character
to potentially touch any adjacent tile while retaining the same gameplay state. If the
character is touching a tile containing the gem or the altar, they can transition to
the next state in the sequence. The completed predicate holds (is true) if the player
character touches the finish tile in the final state (after placing the gem in the altar).
By rejecting every logical world where completed is not true, we zoom in on the
space of different ways of solving the level. No algorithm is needed to solve a level,
only a definition of what it means for a set of touched tiles to constitute a valid
solution.

Although we could use the contents of Figure 8.11 as a stand-alone playabil-
ity checker for human-designed dungeon maps, it is easy enough to simply use
it at the same time as our previous map generator to construct a representation
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% states :
% 1 −−> initial
% 2 −−> after picking up gem
% 3 −−> after putting gem in altar

% you start in state 1
touch(T,1) :- start(T).

% possible navigation paths
{ touch(T2,2):adj(T1,T2) } :- touch(T1,1), sprite(T1,gem).
{ touch(T2,3):adj(T1,T2) } :- touch(T1,2), sprite(T1,altar).
{ touch(T2,S):adj(T1,T2) } :- touch(T1,S).

% you can’t touch a wall in any state
:- sprite(T,wall), touch(T,S).

% the finish tile must be touched in state 3
completed :- finish(T), touch(T,3).
:- not completed.

Fig. 8.11: level-sim.lp

of the space of maps-with-valid-solutions. A command like the following yields
guaranteed-playable, styled dungeon maps like those in Figure 8.12.
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Fig. 8.12: After adding a simulation of player activity and placing constraints on the
outcome, we now only see dungeon maps that have a valid solution

8.6 Constraining the entire space of play

The dungeon maps emerging from the previous section look about as good as sprite-
on-grid maps containing two special objects and some walls can get. However, if we
imagine playing through these maps, perhaps with simple arrow-key controls, there
are still problems to resolve. In many of these maps, the task of placing the gem
in the altar represents only a minor deviation from the more basic task of walking
from the entrance to the exit of the dungeon. If the gem and the altar are to have
any meaning for the gameplay of these maps, their placement and the arrangment
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of walls should conspire to make us explore the map, take detours from a start-
to-finish speed run, and backtrack through familiar areas. Although each of these
concerns could be boiled down to a set of overlapping evaluation criteria in the form
of statements about the relative distances between sprites, there is a better strategy.

If our goal is to get the player to work to progress through the sequence of game-
play states, we can state a much higher-level goal. The low-level design details of
the map should somehow work to make sure the player character spends at least
some amount of time walking around the map in each state. How this is accom-
plished (with a network of rooms connected by indirect passages, perhaps) is not
immediately important to us. Our high-level design goal is most directly cast as a
statement about the player’s experience, not the form of any particular level. We’d
like to demand that, across all possible solutions to a given level design, spending a
minimum amount of time in each state is unavoidable. Interpreted logically, this is
a statement that is quantified over the entire space of play.

Recent advances in the use of ASP for representing design spaces now allow
the direct expression of this kind of design goal. Smith et al. [8] offer a small
metaprogramming library that extends normal ASP with two special predicates.
Their __level_design(Atom) and __concept predicates allow the expression of a
query like this: starting with a given level design and reference solution, does the
design space model allow another possibility in which identical choices are made
for every predicate tagged with __level_design(Atom) and in which __concept

is not true? If so, the tagged __concept condition must not be true for the entire
space of play for the given level design, and it should be rejected. The end result is a
design space of level designs with reference solutions in which __concept is an un-
avoidable condition across all alternative solutions to the level. As __concept could
be any quantifier-free logical formula, this language extension allows the class of
extended answer set programs to express any problem in the complexity class Σ P

2
(conventionally assumed to be much larger than the class NP).

Returning to the dungeon map generation scenario, the rules in Figure 8.13 tag
the sprite(Tile,Name) predicate as uniquely defining a level and the condition of
touching at least width tiles in each of the three states as the desired unavoidable
condition. A command like the following, which makes use of a special disjunctive
answer set solver capable of solving the broader class of high-complexity problems,
yields outputs like those shown in Figure 8.14.
clingo level-core.lp \

level-style.lp \
level-sim.lp \
level-shortcuts.lp \
--reify \

| clingo - meta{,D,O,C}.lp -l \
| clasp

Before we close this section, it is instructive to ask why the following simple rule
doesn’t achieve the same outcome. It would seem to prune away all those solutions
in which the player doesn’t spend enough time in each state.
:- width { touch(T,1) }, width { touch(T,2) }, width { touch(T,3) }.
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% holding sprites constant , ensure every solution touches at least width tiles in each state
__level_design(sprite(T,Name)) :- sprite(T,Name).
__concept :-
width { touch(T,1) },
width { touch(T,2) },
width { touch(T,3) }.

Fig. 8.13: level-shortcuts.lp
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Fig. 8.14: Ensuring that the player cannot avoid spending a certain amount of time
in each state has interesting emergent effects. Certain patterns that we might expect
in human-crafted designs, such as the presence of hidden rooms off the main path
through the level, occur naturally as the solver searches for the form of a level that
gives rise to our requested function at a higher level

This integrity constraint works like the “:- not completed.” rule from before.
It works to make sure we only observe solutions (choices for touch(Tile,State))
that demonstrate an interesting property. Zooming in on solutions that complete the
level doesn’t preclude the player from choosing not to complete the level by simply
wasting time before quitting. Likewise, zooming in on solutions in which the player
wanders for a while doesn’t imply that the wandering was inescapable. If we were to
use this rule instead of the __level_design/__concept construction, we would most
likely see many more examples like those from the previous section (Figure 8.12).
In every example, it would be possible to wander and backtrack, but it would be
unlikely to be actually required.

The idea of casting the most important properties of a level design as statements
quantified over the entire space of play was first developed in the context of the edu-
cational puzzle game Refraction. What makes a given Refraction level desirable and
relevant to its location in a larger level progression is strongly tied to which spatial
and mathematical problem-solving skills must be exercised to solve the level, even
if the level admits many possible solutions. The idea of defining a level progres-
sion primarily on the basis of which concepts are required in which levels was the
basis for one of the direct-manipulation controls in the mixed-initiative progression
design tool for Refraction [3].

Answer set programming is not the only way to write down constraints on which
kinds of gameplay must be possible (e.g. a level should be solvable) and which
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properties of gameplay are required (e.g. that a certain skill is exercised). The key
strategy to follow is to generate not just a minimal description of the content of
interest, but also a description of how the content can be used towards its desired
function (such as a reference solution). Many interesting properties of a piece of
game content are most naturally expressed as criteria that refer to how the content
is used, as opposed to any direct properties of the content itself: a good level is one
that produces desired gameplay when used together with a particular game’s me-
chanics. Despite the fact that generating content under universally quantified con-
straints maps to extremely high-complexity search and optimisation problems, many
of these problems can be solved, in practice, in short enough times to power inter-
active design tools and responsive online content generators embedded into games.
The use of ASP as a generation technique provides a declarative modelling language
that separates the designer of a content generator from the design of the search al-
gorithms that will be applied to these complex problems.

8.7 Exercises: Elaborations in dungeon generation

1. Run each of the examples from the text on your own machine.
2. Add a new style constraint. Make sure you understand how it changes the maps

that are generated.
3. Add a new type of tile sprite, call it lava, that can only be traversed after the

player character has touched the special boots tiles.
4. Change the generator so that it can be initialized with a partial map, and the

generator only fills in unconstrained tiles in a way that fits style constraints.
5. Separate the playability checker from the rest of the dungeon generation pro-

gram. Now apply it as a “machine playtester” [10] to point out playability flaws
in levels you create yourself.

6. Design question: In the previous exercise, you took a playability checker whose
initial job was to say “I wouldn’t let a PCG system generate this level,” and
adapted it to say, “you, human designer, might have some flaws in this level you
showed me.” Are these really answering the same question? If you were writing
a playability checker specifically to comment on human designers’ levels, would
you have written it differently? (See also Chapter 11.)

8.8 Summary

Answer set programming allows you to describe constraints and logical relations
in a language called AnsProlog, and use an ASP solver to find all the world con-
figurations (the “answer set”) that are compatible with the expressed relations and
constraints. AnsProlog is a declarative language that is syntactically similar to Pro-
log; however, its interpretation is different from Prolog and very different from most
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programming languages. ASP can be used for content generation by expressing the
constraints the content must adhere to in AnsProlog, and using an ASP solver to
find all configurations that adhere to these constraints. Each answer in the answer
set is then treated as an individual content artifact. For example, when generating
mazes, constraints may include the existence of starting points, goals, and different
types of cells, as well as the existence of certain through the level. Constraints such
as the reachability constraint can be implemented recursively. By building on com-
binations of simpler constraints and rules, complex constraints can be formulated
that lead to the emergence of interesting level-design properties.
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