
Chapter 9
Representations for search-based methods

Dan Ashlock, Sebastian Risi, and Julian Togelius

Abstract One of the key considerations in search-based PCG is how to represent the
game content. There are several important tradeoffs here, including those between
locality and expressivity. This chapter presents several more new and in some re-
spects more advanced representations. These representations include several repre-
sentations for dungeon levels, compositional pattern-producing networks for flowers
and weapons, and a way of representing level generators themselves.

9.1 No generation without representation

As discussed in Chapter 2, representation is one of the two main problems in search-
based PCG, and one of the two concerns when developing a search-based solution
to a content generation problem. In that chapter, we also discussed the tradeoff be-
tween direct and indirect representations (the former are simpler and usually result
in higher locality, whereas the latter yield smaller search spaces) and presented a few
examples of how different kinds of game content can be represented. Obviously, the
discussion in Chapter 2 has only scratched the surface with regard to the rather com-
plex question of representation. This chapter will dig deeper, partly relying on the
substantial volume of research that has been done on the topic of representation in
evolutionary computation [2].

In the first section of this chapter, we will return to the topic of dungeons, and
show how the choice of representation substantially affects the appearance of the
generated dungeon. The next section discusses the generation of maps for paper-
and-pen role-playing games in particular. After that, we discuss a particular kind of
representation that has seen some success recently, namely Compositional Pattern-
Producing Networks, or CPPNs. As we will see, this representation can be used for
both flowers and weapons, and many things in between. Finally, we will discuss
how we can represent not only the game content but the content generator itself,

159



160 Dan Ashlock, Sebastian Risi, and Julian Togelius

and search for good level generators in a search-based procedural procedural level
generator generator.

9.2 Representing dungeons: A maze of choices

Dungeons or mazes (we mostly use the words interchangeably) are a topic that we
have returned to several times during the book; the topic of most of Chapter 3 was
dungeons, as well as the programming exercise in Chapter 2 and some of the exam-
ples in Chapter 8. The reasons for this are both the very widespread use of this type
of content (including but certainly not limited to roguelike games) and the simplicity
of mazes, allowing us to discuss and compare vastly different methods of generating
mazes without getting lost in implementation details. It turns out that when search-
ing for good mazes, the choice of representation matters in several different ways.

When the issue of representation arises, the goal is often enhanced performance.
Enhanced performance could be improved search speed, creation of game features
with desirable secondary properties that smooth ease of use, or simply fitting in with
the existing computational infrastructure. In procedural content generation, there is
another substantial impact of changing representation: appearance.

The pictures shown in Figure 9.1 are all level maps procedurally generated by
similar evolutionary algorithms. Notice that they have very different appearances.
The difference lies in the representation. All representations specify full and empty
squares, but in different manners. The fitness function can be varied depending on
the designer’s goals and so is left deliberately vague.

Negative

The upper-left level map in Figure 9.1 starts with a matrix filled with ones. Individ-
ual loci in the gene specify where the upper left corner of a room goes and its length
and height. The corridors are rooms with one dimension of length one. The red dots
represent the position of a character’s entrance and exit from the level. There is a
potential problem with a random level having no connection from the entrance to
the exit. If there is a large enough population and the representation length (number
of rooms in each chromosome) is sufficient then the population contains many con-
nected levels and selection can use these to optimise the level. This representation
creates maps that look like mines.

Binary with content

The upper-right map in Figure 9.1 is created used a simple binary representation, but
with required content. The large room with four pillars and the symmetric room with
a closet opening north and south of it are the required content. They are specified



9 Representations for search-based methods 161

Fig. 9.1: Maps generated using four different representations. In reading order the
representations are negative, binary with required content, positive, and binary with
rotational symmetry. Adapted from [1]

in a configuration file. The first few loci of the chromosome specify the position
of the required content elements. The remainder specify bits: 1=full 0=empty. The
fitness function controls relative distances of the required content elements, and the
entrances and exits. The required content represents elements the designer wants
placed in an otherwise procedurally generated level. This representation generates
maps that look like cave systems.

Positive

The lower-left map in Figure 9.1 uses a representation in which the loci specify
walls. The starting position, direction, and maximum length of a wall are given as



162 Dan Ashlock, Sebastian Risi, and Julian Togelius

well as a behavioural control. The behavioural control is 0 or 1. If it is zero it stops
when it hits another wall, if it is one it grows through the other wall. This representa-
tion generates maps that look like floor plans of buildings. The example shown uses
eight directions—eliminating the diagonal directions yields an even more building-
like appearance.

Binary with symmetry

This representation specifies directly, as full and empty, the squares of one quarter of
the level with a binary gene. Each bit specifies the full/empty status of four squares
in rotationally symmetric positions. There are a large number of possible symme-
tries that could be imposed. The imposition of symmetry yields a very different
appearance.

9.2.1 Notes on usage

An important additional factor is that we need to ensure levels are connected. In
the plain binary representation, if the probability of filling a square is 0.5 then it
is incredibly unlikely that there is any path between entrance and exit. Similarly,
if the length of walls in the positive representation is close to the diameter of the
level, connected levels are unlikely. In both cases a trick called sparse initialisation
is used. Setting the probability of a filled square to 0.2 or the maximum length of
a wall to 5 makes almost all random levels connected. They are also, on average,
very highly connected and so not very good. This leaves the problem of locating
good levels to whatever technique the search algorithm uses to improve levels. In the
examples shown, the crossover and mutation operators of the evolutionary algorithm
found this to be quite easy.

The representations shown to illustrate the impact of changing representation are
relatively simple. Figure 9.2 shows a more complex version of the positive represen-
tation with three types of walls. If there are two types of players, one of which can
move through water and the other of which can move through fire, this representa-
tion permits the simultaneous generation of two mazes, stone-fire and stone-water,
that can be optimised for particular tactical properties. In this case the stone-water
maze is easier to navigate than the stone-fire maze.

9.3 Generating levels for a fantasy role-playing game

An under-explored application of procedural content generation is the automatic
creation of pen-and-paper (i.e. played without a computer) fantasy role-playing
(FRP) modules. Popular examples of fantasy role-playing games include Dungeons



9 Representations for search-based methods 163

Fig. 9.2: An example of a maze, using a positive representation, with three sorts of
walls: stone, fire, and water

and Dragons and the associated open gaming licence D20 systems which are used
for heroic fantasy settings, Paranoia set in a dystopian, Orwellian future, Champions
which is used for comic-book-style environments, and Deadlands, set in a haunted
version of the old west. These are typically pencil-and-paper games in which players
run characters and a referee (also known as a game master) interprets their actions
with the help of dice, though some of these games have also been adapted into com-
puter role-playing games. The system described here is intended to generate small
adventure modules for a heroic fantasy setting.

There are a number of ways to structure generation of this type of content. The
one presented here starts with required-content generation of a level. This means that
the designer specifies blocks of the map, such as groups of rooms, that are forced
into the level. The rest of the level is generated by filling in the area to match the rel-
ative distance between objects specified by the designer. This technique permits us
to used search-based content generation to create many different levels all of which
have basic properties specified by the designer. An example of a level generated in
this fashion appears in Figure 9.3. Room 14 is an example of required content as
is the block represented by rooms 7, 8, 11, and 12. These four rooms are a single
required-content object.

Once the level map has been generated, the ACG system then automatically iden-
tifies room-sized open spaces on the map—this includes the rooms in the required
content but also other spaces generated by the search algorithm optimising the level.
The rooms are numbered and a combinatorial graph is abstracted from the map with
rooms as vertices. The adjacency relation on the rooms is the existence of a path be-



164 Dan Ashlock, Sebastian Risi, and Julian Togelius

Fig. 9.3: Example of a level with automatically detected and numbered rooms

tween the rooms that does not contain a square in any other room. The graph for the
map in Figure 9.3 is shown in Figure 9.4. The rooms are coloured to show which grid
cells belong to them. The map with the numbered rooms, probably sans colours, is
saved for use by the referee. The graph is handed off to the room-populating engine.

We now look at the details of the level generator. Each of these modules is an
exemple and can be swapped for alternative methods with other capabilities.

9.3.1 Required content

The underlying representation for creating the levels is a simple binary one in which
1=full and 0=empty. It is modified with specifications of required content. An entry
in the required-content configuration file looks like this:



9 Representations for search-based methods 165

12 12
111111111111
100100000001
100000000001
100111011001
100100001001
100100001001
100130001001
100111111001
100100000002
100100000002
100100000002
111111111111

The object specified is a 12×12 area. The representation specifies the position in
the level of the upper-left-hand corner of the room, which is part of the optimisation
performed by the search algorithm. The values 0,1 are mapped directly into the level,
forcing values. The value 2 means that those squares are specified by the binary gene
used to evolve the level. This means that some of the squares in the required content
are seconded to the search algorithm. The 3 is the same as a zero—empty space—
but it marks the checkpoint in the required-content object from which distances
are measured. Distances are computed by dynamic programming and the fitness
function uses distances between checkpoints as part of the information needed to
compute fitness.

9.3.2 Map generation

The map is generated by an evolutionary algorithm. The chromosome has 2N inte-
ger loci for N required-content objects that are reduced modulo side length to find
potentially valid places to put required-content objects. If required-content objects
overlap, the chromosome is awarded a maximally bad fitness. The remainder of the
position in the map, including 2’s in required content, are specified by a binary gene.
This gene is initialised to 20% ones, 80% zeros to make the probability the map is
connected high. This is sparse initialisation, described earlier. The fraction of ones
in population members is increased during evolution by the algorithm’s crossover
and mutation operators.

9.3.3 Room identification

The room identification algorithm contains an implicit definition of what a room is.
The rooms appearing in the required content must satisfy this implicit definition—if



166 Dan Ashlock, Sebastian Risi, and Julian Togelius

not they will not be identified as rooms. For that reason a relatively simple algorithm
is used to identify rooms.

Room identification algorithm

N=0
Scan the room in reading order

If a 3x3 block is empty
mark the block as in room N
iteratively add to the room all squares with three neighbours

already in the room
N=N+1

End If
End Scan

Once a square is marked as being part of a room, it is not longer empty, forcing
rooms to have disjoint sets of squares as members. The implementation reports the
squares that are members of each room and the number of squares in each room.

9.3.4 Graph generation

The rooms form the vertices of the graph of the dungeon. Earlier, a painting algo-
rithm was used to partition space. The adjacency of rooms is computed in a very
similar fashion. For each room, a painting algorithm is used to extend the room into
all adjacent empty spaces until no such spaces are left. The rooms that the paint-
ing algorithm reaches are those adjacent to the room that was its focus. Each room
is extended individually by painting and the paint added is erased before treating
the next room. While the painting could be done simultaneously for all rooms, this
might cause problems in empty spaces adjacent to more than two rooms.

The adjacency relationship has the form of a list of neighbours for each room but
can be reformatted in any convenient fashion. The graph in Figure 9.4 was generated
with the GraphVis package from an edge list—a list of all adjacent pairs of rooms.

9.3.5 Room population

The adjacency graph for the rooms is the simplest object to pass to a room popu-
lation engine. The designer knows which room(s) and entrances and typically sup-
plies this information to the population engine. The engine then does a breadth-first
traversal of the graph placing lesser challenges, such as traps and smaller monsters,
in the first layer, tougher monsters in the next layer, and treasure (other than that



9 Representations for search-based methods 167

Fig. 9.4: The room adjacency graph abstraction for the level shown in Figure 9.3.
Vertex vn represents room n

carried by monsters) in the next layer. Exits to the next level are typically in the last
layer.

The required content is tagged if there is a special population engine connected
with it. An evil temple, a crypt, a dragon’s den or other boss can be placed with
required content to make sure they always appear in the automatically generated
level. Correct design of the fitness function ensures that the encounters appear in an
acceptable sequence, even in a branching level, and so enable replayability.

The population engine needs a database of classified opponents, traps, and trea-
sures scaled by difficulty. It can select randomly or in a fashion constrained by
“mood” variables. A dungeon level in a volcano, for example, might be long on fire
elementals and salamanders and short on wraiths, vampires, and other flammable



168 Dan Ashlock, Sebastian Risi, and Julian Togelius

undead. A crypt, on the other hand, would be long on ghouls or skeletons and short
on officious tax collectors. The creation of the encounter database, especially a care-
ful typing system to permit enforcement of mood and style, is a critical portion of
the level creation. The database needs substantially more encounters not associated
with required content than it will use in a particular instance of the output of the
level generator.

9.3.6 Final remarks

The FRP level generator described here is an outline. Many details can only be
filled in when it is united with a particular rules system. The level generator has the
potential to create multiple versions of a level and so make it more nearly replayable
even when one or more of the players in a group has encountered the dungeon
before. While fully automatic, the system leaves substantial scope for the designer
in creating the required content and populating the encounter database.

9.4 Generating game content with compositional
pattern-producing networks

In Chapter 5 we saw how grammars such as L-systems can create natural-looking
plants, and learned that they are well suited to reproducing self-similar structures.
In this chapter we will look at a different representation that also allows the creation
of lifelike patterns, called compositional pattern-producing networks (CPPNs) [10].
Instead of formal grammars, CPPNs are based on artificial neural networks. In this
section, we will first take a look at the standard CPPN model and then see how that
representation can be successfully adapted to produce content as diverse as weapons
in the game Galactic Arms Race [4] and flowers in the social videogame Petalz [7].
In Petalz, a special CPPN encoding enables the player to breed an unlimited number
of natural-looking flowers that are symmetric, contain repeating patterns, and have
distinct petals.

9.4.1 Compositional pattern-producing networks (CPPNs)

Because CPPNs are a type of artificial neural network (ANN), we will first introduce
ANNs and then show that can modify them to produce a variety of different content.
ANNs are computational models inspired by real brains that are capable of solving
a variety of different tasks, from handwriting recognition and computer vision to
robot control problems. ANNs are also applied to controlling NPCs in games and
can even serve as PCG evaluation functions. For example, neural-network-based



9 Representations for search-based methods 169

(a) Neural network (b) CPPN

CPPN
x
y

value 
at x,y

x

y

(applied at
each point)

(c) CPPN to image

Fig. 9.5: While traditional ANNs typically only have Gaussian or sigmoid activation
functions (a), CPPNs can use a variety of different function, including sigmoids,
Gaussians, and sines (b). The CPPN example in this figure takes two arguments x
and y as input, which can be interpreted as coordinates in two-dimensional space.
Applying the CPPN to all the coordinates and drawing them with an ink intensity
determined by its output results in a two-dimensional image (c). Adapted from [4]

controllers can be trained to drive like human players in a car-racing game to rate
the quality of a procedurally generated track [12].

An ANN (Figure 9.5a) is an interconnected group of nodes (also called neurons)
that can compute values based on external signals (e.g. infrared sensors of a robot)
by feeding information through the network from its input to its output neurons.
Neurons that are neither input nor output neurons are also called hidden neurons.
Each neuron i has an activation level yi that is calculated based on all its incoming
signals x j scaled by connection weights wi j between them:

yi = σ

(
N

∑
j

wi jx j

)
, (9.1)

where σ is called the activation function and determines the response profile of the
neuron. In traditional ANNs the activation function is often the sigmoid function

σ(x) =
1

1+ e−kx , (9.2)

where the constant k determines the slope of the sigmoid function. The behaviour of
an ANN is mainly determined by its architecture (i.e. which neurons are connected
to which other neurons) and the strengths of the connection weights between the
neurons.

While ANNs are usually used for control or classification problems, they can
also be adapted to produce content for games. CPPNs are a variation of ANN that
function similarly but can have a different set of activation functions [10]. Later we
will see how special kinds of CPPNs can produce flowers in the Petalz videogame
and weapons in GAR. While CPPNs are similar to ANNs, they have a different



170 Dan Ashlock, Sebastian Risi, and Julian Togelius

Fig. 9.6: Examples of collaboratively evolved images on Picbreeder. Adapted
from [9]

terminology because CPPNs are mainly used as pattern generators instead of as
controllers. Let us now take a deeper look at the differences in implementation and
applications between CPPNs and ANNs.

Instead of only sigmoid or Gaussian activation functions, which we can also
find in ANNs (Figure 9.5a), CPPNs can include a variety of different functions
(Figure 9.5b). The types of functions that we include has a strong influence on
the types of patterns and regularities that the CPPN produces. Typically the set
of CPPN activation functions includes a periodic function such as sine that pro-
duces segmented patterns with repetition. Another important activation function is
the Gaussian, which produces symmetric patterns. Both repeating and symmetric
patterns are common in nature and including them in the set of activation functions
allows CPPNs to produce similar patterns artificially. Finally, linear functions can
also be added to produce patterns with straight lines. The activation of a CPPN fol-
lows the ANN activation we saw in Equation 9.1, except that we now have a variety
of different activation functions.

Additionally, instead of applying a CPPN to a particular input only (e.g. the po-
sition of an enemy) as is typical for ANNs, CPPNs are usually applied across a
broader range of possible inputs, such as the coordinates of a two-dimensional space
(Figure 9.5c). This way the CPPN can represent a complete image or as we shall see
shortly also other patterns like flowers. Another advantage of CPPNs is that they can
be sampled at whatever resolution is desired because they are compositions of func-
tions. Successful CPPN-based applications include Picbreeder [9], in which users
from around the Internet collaborate to evolve pictures, EndlessForms [3], which al-
lows users to evolve three-dimensional objects, and MaestroGenesis [5], a program
that enables users to generate musical accompaniments to existing songs. Figure 9.6
shows some of the images that were evolved by users in Picbreeder, which demon-
strate the great variety of patterns CPPNs can represent. The CPPNs encoding these
images and the other procedurally generated content in this chapter are evolved by
the NEAT algorithm, which we will now examine more closely.



9 Representations for search-based methods 171

9.4.2 Neuroevolution of augmenting topologies (NEAT)

NEAT [11] is an algorithm to evolve neural networks; since CPPNs and ANNs are
very similar, the same algorithm can also evolve CPPNs. The idea behind NEAT
is that it begins with a population of simple neural networks or CPPNs that have
no initial hidden nodes, and over generations new nodes and connections are added
through mutations. The advantage of NEAT is that the user does not need to de-
cide on the number of neurons and how they are connected. NEAT determines the
network topology automatically and creates more and more complex networks as
evolution proceeds. This is especially important for encoding content with CPPNs
because it allows the content to become more elaborate and intricate over genera-
tions. While there are other methods to also evolve ANNs, NEAT is a good choice
to evolve CPPNs because it worked well in the past in a variety of different domains
[9, 5, 11, 4], and it is also fast enough to work in real-time environments such as
interactive games.

9.4.3 CPPN-generated flowers in the Petalz videogame

Petalz [7] is a Facebook game in which procedurally generated content plays a sig-
nificant role. The player can breed a collection of unique flowers and arrange them
on their balconies (Figure 9.7). A flower context menu allows the player, among
other things, to create new offspring through pollination of a single flower, or to
combine two flower genomes together through cross-pollination. In addition to in-
teracting with the flower evolution, the player can also post their flowers on Face-
book, sell them in a virtual marketplace, or send them as gifts to other people. An
important aspect of the game is that once a player purchases a flower, he can now
breed new flowers from the purchased seed, and create a whole new lineage. Re-
cently, Petalz was also extended with collection-game mechanics that encourage
players to discover 80 unique flower species [8].

The flowers in Petalz are generated through a special kind of CPPN. Because
the CPPN representation can generate patterns with symmetries and repetition, it is
especially suited to generating natural-looking flowers with distinct petals. The ba-
sic idea behind the flower encoding is to first deform a circle to generate the shape
of the flower and then to colour that resulting shape based on the CPPN-generated
pattern. In contrast to the example we saw in Figure 9.5c, we now input polar co-
ordinates {θ ,r} into the CPPN (Figure 9.8) to generate radial flower patterns. Then
we query the CPPN for each value of θ by inputting {θ ,0}. However, instead of
inputting θ into the CPPN directly, we input sin(Pθ), which makes it easier for
the CPPN to produce flower-like images with radial symmetry in the form of their
petals. Parameter P can also be adjusted to create flowers with a different maximum
numbers of petals. In the first step of the flower-generating algorithm the outline of
the flower is determined, i.e. a radius value rmax for each θ value is calculated. In the
next step, the RGB colour pattern of the flower’s surface is determined by querying



172 Dan Ashlock, Sebastian Risi, and Julian Togelius

Fig. 9.7: Screenshot from a Petalz balcony that a player has decorated with various
available flower pots and player-bred flowers. Adapted from [7]

each polar coordinate between 0 and rmax with the same CPPN. Finally, the CPPN
also allows for the creation of flowers with different layers, which reflects the fact
that flowers in nature often have internal and external portions. This feature is im-
plemented through an additional CPPN input L that determines the current layer
that is being drawn. The algorithm starts by drawing the outermost layer and then
each successive layer is drawn on top of the previous layers, scaled based on its
depth. Because the same CPPN is determining all the layers, the different patterns
can share regularities just like the different layers in real flowers.

Figure 9.9 shows examples of flowers evolved by players in Petalz. The CPPN-
based encoding allows the discovery of a great variety of aesthetically pleasing flow-
ers, which show varying degrees of complexity.

9.4.4 CPPN-generated weapons in Galactic Arms Race

Galactic Arms Race [4] is another successful example of a game using procedurally
generated content and interactive evolution. Procedurally generated weapon projec-
tiles, which are the main focus of this space shooter game, are evolved interactively
based on gameplay data. The idea behind the interactive evolution in GAR, which
was briefly discussed in Chapter 1, is that the number of times a weapon is fired
is considered an indication of how much the player enjoys that particular weapon.



9 Representations for search-based methods 173

L=.5

L=1.0

r

Fig. 9.8: The flower-encoding CPPN in Petalz has four inputs: polar coordinates r
and θ , current layer L and bias b. The first three outputs determine the RGB colour
values for that coordinate. In the first step of the algorithm the maximum radius for
a given θ is determined through output rmax. In the next step RGB values of the
flower’s surface are determined by querying each polar coordinate between 0 and
rmax with the same CPPN. The number and topology of hidden nodes is evolved by
NEAT, which means that flowers can get more complex over time. From [7]

Fig. 9.9: Examples of flowers collaboratively evolved by players in the Petalz
videogame. Adapted from [7]

As the game is played, new particle weapons are automatically generated based on
player behaviour. We will now take a closer look at the underlying CPPN encoding
that can generate these weapon projectiles.

Each weapon in the game is represented as a single CPPN (Figure 9.10) with
four inputs and five outputs. Instead of creating a static image (Figure 9.6) or flower
(Figure 9.8) the CPPNs in GAR determine the behaviour of each weapon particle
over time. Each animation frame the CPPN is queried for the movement (velocity in
the x and z direction) and appearance (RGB colour values) of the particle given the
particle’s current position in space relative to the ship (px, py) and distance dc to its
starting position. After activating the CPPN, the particles are moved to their newly
determined positions and the CPPN is queried again in the next frame of animation.
Evolution starts with a set of simple weapons that shoot only in a straight line and
then more and more complex weapons are evolved based on the NEAT method. By
adding new nodes with different activation functions, such as Gaussian and sine,
interesting particle movements can evolve and the player can discover a variety of
different weapons.

Figure 9.11 shows a variety of interesting weapons with vivid patterns that were
evolved by players during the game. Interestingly, different weapons do not just
have a different look but also tactical implications. For example, the wallmaker



174 Dan Ashlock, Sebastian Risi, and Julian Togelius

Fig. 9.10: CPPN representation of weapon projectiles in GAR. The movement of
each particle is controlled by the same CPPN, which has four inputs and five outputs.
The first three inputs describe the position of the particle (px, py) and the distance
dc from the location from which it was fired. After the CPPN activation, the outputs
determine the particle’s velocity (vx,vy) and RGB colour value. Adapted from [4]

Fig. 9.11: Examples of CPPN-encoded weapons evolved in the Galactic Arms Race
videogame. Adapted from [4]

weapon (Figure 9.11c) can create a wall of particles in front of the player, which
allows for a more defence-oriented play. Other guns such as the multispeed weapon
(Figure 9.11a) can be used in tactical situations in which a more offence-oriented
approach is needed.



9 Representations for search-based methods 175

9.5 Generating level generators

Our final example of an advanced representation is not a representation of a partic-
ular type of game content, but rather of a level generator itself. This example, due
to Kerssemakers et al. [6], views the content generator itself as a form of content,
and creates a generator for it, a procedural procedural content generator genera-
tor (PPLGG). Specifically, it is a search-based generator that searches a space of
generators, each of which generate levels for Super Mario Bros. in the Mario AI
Framework.

As usual, we can understand a search-based generator in terms of representation
and evaluation. The evaluation in this case is interactive: a human user looks at the
various content generators, and chooses which of them (one or several) will survive
and form the basis of the next generation. In order to be able to assess these con-
tent generators, the user can look at a sample of ten different levels generated by
each content generator, and play any one of them; the tool also gives an estimate
of how many of these levels are playable using simulation-based evaluation. Com-
plementarily, the user can see a “cloud view” of each generator, where a number of
levels generated by that generator are superimposed so that patterns shared between
the levels can be seen (Figure 9.12). Figure 9.13 shows a single level in condensed
view, and part of the same level in game view, where the user can actually play the
level.

More interesting from the vantage point of the current chapter is the question
of representation. How could you represent a content generator so as to create a
searchable space of generators? In this case, the answer is that the generator is based
on agents (each generator contains between 14 and 24 agents), and the generator
genome consists of the parameters that define how the agents will behave. During
generation, the agents move concurrently and independently, though they affect each
other indirectly through the content they generate.

The genome consists of specifications for a number of agents. An agent is defined
by a number of parameters, that specify how it moves, for how long, where and when
it starts, how it changes the level and in response to what. The agent’s behaviour is
not deterministic, meaning that any collection of agents (or even any single agent) is
a level generator that can produce a vast number of different levels rather than just
a generative recipe for a single level.

The first five parameters below are simple numeric parameters that consist of
an integer value in the range specified below. The last five parameters are categor-
ical parameters specifying the logic of the agent, which might be associated with
further parameters depending on the choice of logic. The following is a list of all
parameters:

• Spawn time [0-200]: The step number on which this agent is put into the level.
This is an interesting value as it allows the sequencing of agents, but still allows
for overlap.

• Period [1-5]: An agent only performs movement if its lifetime in steps is divisible
by the period.



176 Dan Ashlock, Sebastian Risi, and Julian Togelius

Fig. 9.12: A cloud view of several content generators. Each content generator is
represented by a “cloud” consisting of multiple levels generated by that generator,
overlaid on top of each other with low opacity. Adapted from [6]

• Tokens [10-80]: The amount of resources available to the agent. One token
roughly equals a change to one tile.

• Position [Anywhere within the level]: The center of the spawning circle in
which the agent spawns.

• Spawn radius [0-60]: The radius of the spawning circle in which the agent
spawns.

• Move style: the way the agent moves every step.

– follow a line in a specified direction (of eight possible directions) with a spec-
ified step size.

– take a step in a random direction.



9 Representations for search-based methods 177

= = = =

Fig. 9.13: A single generated level, and a small part of the same level in the game
view. Adapted from [6]

• Trigger state: The condition for triggering an action, checked after each move-
ment step.

– always.
– when the agent hits a specified type of terrain.
– when a specified rectangular area is full of a specified tile type.
– when a specified area does not contain a specified tile type.
– with a specified probability.

• Boundary movement: The way the agent handles hitting a boundary.

– bounce away.
– go back to start position.
– go back to within a specified rectangular area around the start position.

• Action type: The type of action performed if it is triggered.



178 Dan Ashlock, Sebastian Risi, and Julian Togelius

– place a specified tile at position.
– place a rectangular outline of specified tiles and size around position.
– place a filled rectangle of specified tiles and size around position.
– place a circle of specified tiles and size around position.
– place a platform/line of specified tiles and size at position.
– place a cross of specified tiles and size at position.

Given that the starting position of agents implies a large amount of randomness,
and a number of other behaviours imply some randomness, the same set of agents
will produce different levels each time the generator is run. This is what makes this
particular system a content generator generator rather than “just” a content genera-
tor.

9.6 Summary

This chapter addressed the issue of content representation within search-based
PCG. How content is represented affects not only how effectively the space can
be searched, but also biases the search process towards different parts of the search
space. This can be illustrated by how different ways of representing a dungeon or
maze yield end products that look very different, even though they are evolved to
satisfy the same evaluation function and reach similar fitness. Representations can
be tailored to extend the search-based paradigm in various ways, for example by
providing “required content” that cannot be altered by the variation operators of
the search/optimisation algorithm. More complicated representations might require
a multi-step genotype-to-phenotype mapping that can be seen as a PCG algorithm
in its own right. For example, compositional pattern-producing networks (CPPNs)
are a form of neural network that maps position in some space to intensity, colour,
direction or some other property of pixels or particles. This is an interesting content
generation algorithm in itself, but can also be seen as an evolvable content represen-
tation. Taking this perspective to its extreme, we can set out to evolve actual content
generators, and judge them not on any single content artefact they produce but on
samples of their almost infinitely variable output. The last example in this chapter
explains one way this can be done, by representing Mario AI level generators as
parameters of agent-based systems and evolving those.

References

1. Ashlock, D., Lee, C., McGuinness, C.: Search-based procedural generation of maze-like lev-
els. IEEE Transactions on Computational Intelligence and AI in Games 3(3), 260–273 (2011)

2. Ashlock, D., McGuinness, C., Ashlock, W.: Representation in evolutionary computation. In:
Advances in Computational Intelligence, pp. 77–97. Springer (2012)



9 Representations for search-based methods 179

3. Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encoding inspired
by developmental biology. In: Proceedings of the European Conference on Artificial Life
(2011)

4. Hastings, E., Guha, R., Stanley, K.: Evolving content in the Galactic Arms Race video game.
In: Proceedings of the IEEE Symposium on Computational Intelligence and Games, pp. 241–
248 (2009)

5. Hoover, A.K., Szerlip, P.A., Norton, M.E., Brindle, T.A., Merritt, Z., Stanley, K.O.: Generating
a complete multipart musical composition from a single monophonic melody with functional
scaffolding. In: Proceedings of the 3rd International Conference on Computational Creativity,
pp. 111–118 (2012)

6. Kerssemakers, M., Tuxen, J., Togelius, J., Yannakakis, G.N.: A procedural procedural level
generator generator. In: Proceedings of the IEEE Conference on Computational Intelligence
and Games, pp. 335–341 (2012)

7. Risi, S., Lehman, J., D’Ambrosio, D.B., Hall, R., Stanley, K.O.: Combining search-based
procedural content generation and social gaming in the Petalz video game. In: Proceedings of
the Artificial Intelligence and Interactive Digital Entertainment Conference (2012)

8. Risi, S., Lehman, J., D’Ambrosio, D.B., Stanley, K.O.: Automatically categorizing procedu-
rally generated content for collecting games. In: Proceedings of the Workshop on Procedural
Content Generation in Games (2014)

9. Secretan, J., Beato, N., D’Ambrosio, D., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.,
Stanley, K.: Picbreeder: A case study in collaborative evolutionary exploration of design space.
Evolutionary Computation 19(3), 373–403 (2011)

10. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of develop-
ment. Genetic Programming and Evolvable Machines 8(2), 131–162 (2007)

11. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.
Evolutionary Computation 10(2), 99–127 (2002)

12. Togelius, J., De Nardi, R., Lucas, S.M.: Towards automatic personalised content creation for
racing games. In: Proceedings of the IEEE Symposium on Computational Intelligence and
Games, pp. 252–259 (2007)


