
Appendix A
Game-designer interviews

To complement the technical content of the chapters, all written by academics
(though some of the chapter authors also design and develop games), we performed
five interviews with the creators of well-known PCG-heavy games. We selected the
interviewees mostly because the games they had been part of had either introduced
new interesting PCG techniques, or because they had integrated them in game de-
sign in some novel way. The interviews were performed in 2013 and 2014 over
email, and are reproduced in their entirety here (except for corrected typos). We
asked most of the interviewees the same set of questions, focusing on the role of
PCG in game design and the limits of generative methods.

The interviewees are:

• Andrew Doull, creator of UnAngband and UnBrogue, founder of RogueLikeRa-
dio.

• Ed Key, creator of Proteus.
• Michael Toy, co-creator of Rogue.
• Richard Evans, AI lead programmer on The Sims 3, co-creator of Versu.
• Tarn Adams, creator of Dwarf Fortress.

A.1 Andrew Doull

Was there anything you wanted to do in a game you worked on that
you could not do because of algorithmic or computational
limitations?

My thinking about game design has changed significantly over the years, since
writing the original Death of the Level Designer series of articles. One of the key
changes—guided a lot by games like Michael Brough’s 868-HACK—is that a game
should embrace limitations, rather than attempt to design around them. So rather
than creating procedural systems which can model everything à la Dwarf Fortress,

225



226 A Game-designer interviews

there are real advantages in keeping games as limited as possible in order that the
significance of individual procedural elements is emphasized, rather than smoothed
over by a melange of inputs. My personal limitations are very much around algo-
rithm implementation rather than design: for instance, while I have a good under-
standing of what a Voronoi diagram looks like and where it could be used, I’m
unlikely to ever successfully reimplement anything but a brute force approach for
calculating cell membership.

What new design questions has PCG posed for some game you
worked on?

I’ve written extensively about this—refer to the writing on my blog post on Unang-
band’s dungeon generation and algorithmic monster placement for specific discov-
eries. Since then, UnBrogue includes very little original procedural content: I mostly
plug new values into the well written framework that Brian Walker has developed
for Brogue’s “machine” rooms. These days I try to steer clear of actually designing
procedural systems: my experience is that you can achieve a lot using a very simple
set of algorithms, provided you choose your content carefully (see Darius Kazemi’s
essay on Spelunky’s level generation for a great example of this).

What is the most impressive example of procedural content
generation you have seen since your own work?

I’d be hard pressed to ignore Miguel Cepero of Voxel Farm, who I’m sure a lot of
people you interview will mention. While the above ground system looks great, it
was his cave designs that won me over, after being a doubter. What really impresses
me though is he’s developing all this while being the father of twins—I’m in the
same position and I can never find the time...

What do you think of the fact that roguelikes have become a genre
of their own? Is PCG in your opinion an essential part of what a
roguelike is?

I’m going to quote Edmund McMillen here, since he made the definitive statement
on why you should write a roguelike:

“The roguelike formula is an amazing design plan that isn’t used much, mostly
because its traditional designs rely on alienatingly complicated user interfaces. Once
you crack the roguelike formula, however, it becomes an increasingly beautiful,



A.1 Andrew Doull 227

deep, and everlasting design that allows you to generate a seemingly dynamic ex-
perience for players, so that each time they play your game they’re getting a totally
new adventure.”1

PCG is obviously an important part of this process, but it isn’t independent from
the other roguelike genre features like permadeath.

My hunch is that there are other “design plans” out there that are waiting to be
found that will feature PCG—in fact the majority will do, but we don’t necessarily
know what they look like, or have the maturity of the medium (of PCG) to be able
to discover them.

What are your tips for designing games that use PCG?

Keep your algorithms simple and choose your content carefully.

Do you have any interesting stories about PCG failures?

Not personally, since I’ve taken such a conservative approach to PCG algorithms.

In general, is there anything in a game you think could never be
procedurally generated?

The specific quirks of the real world. I’m not saying that PCG can’t create something
like the real world: I expect the depth required to make a world “completely con-
vincing” is actually more shallow than most PCG “haters” realize—but ultimately,
when it comes to simulation, the fact that we exist at a specific time and place in
a continuum of choices and random events is something that PCG can only hold
a mirror up to. Hand placed design will always be needed if you want to model
history—PCG will overtake hand placed design for “fantasy worlds” in the not too
distant future.

Why is PCG not used more?

PCG is a language that requires a level of literacy to understand. We’re not effec-
tively teaching this language yet, but we’re not effectively teaching the language of
game design in general either. Also, it is often more expensive than hand placed con-

1 http://www.gamasutra.com/view/feature/182380/



228 A Game-designer interviews

tent, because a PCG algorithm which is only 90% complete can not create anything
useful, whereas 90% accurate hand placed content is clearly 9/10ths done. It’s hard
to describe working with PCG this way, but there’s almost a phase change between
when a PCG algorithm just creates junk, and when it starts producing beautiful re-
sults, and it can be very hard to tune it to reach this state.

What do you see as current directions for PCG that are worth
investigating?

There’s a lot of interesting stuff happening on the academic side—getting this to
percolate over to game development is going to be the real challenge.

A.2 Ed Key

Was there anything you wanted to do in a game you worked on that
you could not do because of algorithmic or computational
limitations?

At first there was: At one point Proteus was going to be some kind of sandbox RPG
with generated towns and quests. Once I started talking to David about music, we
reshaped the game as being all about music and exploration, and also at this point
started to find and work with the “grain” (as in carving wood) of what we had,
shaping what we wanted to do to the medium we were working in.

You can extend this to Proteus being an island rather than an infinitely streaming
world. The latter would have been technically much harder but also not really desir-
able once we decided to focus on a finite space that allowed you to get a little lost
but was also bounded and so allowed some familiarity and revisiting of locations.

Do you have any tips for designing games that use procedural
content?

Think about framing, structure and pacing. Consider how in the classical example
of Rogue, the procedural generation is incredibly simple and designed as a kind
of “lumpy canvas” for the authored elements (creature, potions, etc.) to interact. I
think the most successful PCG applications understand how the procedural content
is framed and given context by authored content, or sometimes by human curation.
Think of procedural generation as poetry or music and make use of the player’s



A.2 Ed Key 229

imagination and faith rather than trying to create results that withstand point-by-
point examination.

One strength of PCG is to create “wildness”—either mimicking or evoking na-
ture or in glitch aesthetics. On the other hand, formal disciplines like architecture
provide patterns that PG systems can use, but I think you still need something in the
“fiction” of the game to make freakish “wrong” results something appealing rather
than bugs that break immersion.

Something I’m really keen on in game design is how to create “substances” or
things that “feel substantial”. I think a lot of this is about establishing scope and
language early on and sticking to these as a contract with the player. Of course, you
can subvert those expectations, but first you need to establish them.

In general, is there anything in a game you think could never be
procedurally generated?

Stuff like human behaviour is always going to be hard. My solution to this is to have
the PCG operate at a level of hints and suggestions instead of trying to generate
fully detailed characters, behaviour and artefacts. If the player is invested enough to
fill in the gaps with their imagination this will be a much richer experience than if
they are just given all the details and their mind unengaged and free to pick holes in
those.

There’s a deeper issue in that “meaning” can never be created by a computer sys-
tem, in my opinion. “Meaning” arises in the mind of a conscious being and is about
how the player reads and interacts with the game. On the other side it’s about what
you as the architect of the PG system put into it—values, aesthetics, etc. Humanity
is paradoxically extremely important in this domain.

What is the most impressive example of procedural content
generation you have seen since your own work?

My friend Alex May is doing some beautiful stuff with procedural trees2. For some-
thing that’s released and generating a full gameworld, maybe this PG stuff by Tom
Betts3. No Man’s Sky is also extremely enticing but hard to separate hype and ex-
pectation from the actual product at the current time (Jan 2013).

2 http://blog.starboretum.com/
3 http://www.big-robot.com/tag/sir-you-are-being-hunted/



230 A Game-designer interviews

What do you think of the fact that roguelikes have become a genre
of their own? Is PCG in your opinion an essential part of what a
roguelike is?

Well, roguelike when I first knew it was permadeath and proc-gen ascii dungeons.
Now we have a whole spectrum of roguelike-likes including FTL, Don’t Starve,
etc. I think the genre already existed but has become broader, whilst at the same
time procedural techniques are spreading and growing in all genres from FPSes to
interaction fiction. I would say that yes, PCG is essential to a roguelike, but it’s
always interesting to take that as a challenge. Maybe the great PCG-free roguelike
is Dark Souls? No-one calls that a roguelike, and I think it wouldn’t work if it
was procedurally generated, but it seems to share a lot of the flavour of “punishing
exploration”. It’s interesting to think about how Dark Souls would be worse if it was
proc-gen. Places in the world would have less resonance, and players wouldn’t be
able to share stories or advice in the same way.

A.3 Michael Toy

Was there anything you wanted to do in Rogue that you could not
do because of algorithmic or computational limitations?

The limited size of programs on the PDP 11/70 (64 kilobytes), kept us from im-
plementing the variety of AI driven monsters that we had imagined in the design
phase.

What is the most impressive example of procedural content
generation you have seen since your own work?

Have to tip my hat to Dwarf Fortress. The story-telling and emergent properties are
marvelous. And the game Moria was probably the closest to what we had imagined
doing when we started writing Rogue. I’m sure there are more, I am not an expert
in the field, but there’s my answer.



A.3 Michael Toy 231

What do you think of the fact that roguelikes have become a genre
of their own? Is PCG in your opinion an essential part of what a
roguelike is?

The word “roguelike” belongs to the community that invented the word, so I don’t
claim any special authority. However the initial design goal for Rogue was to pro-
duce a game that avoided two problems, and the two solutions resulting are often
stated in the definition of a roguelike, PCG and permadeath.

The first problem was that having written several text adventures, it eventually (it
should have been sooner, we were young and stupid) became clear that it was never
going to be fun playing a game where you knew everything. So the quest became to
try and make a game where even the creator of the game is involved in a quest for
discovery.

Second we wanted to avoid the “Dragon’s Lair” problem where winning the
game is just running until you die, then backing up and doing something different,
repeated endlessly. We allowed saved games so you could stop and go to class or eat,
but worked hard to dis-allow people from re-playing from a save point repeatedly,
not because we were trying to create permadeath precisely, but because we wanted
the in-game consequences to matter. If a player decided to take a small or a large
risk, we wanted that risk to be a more real risk than simply the risk that you might
have to restore from the save file. This then made the rewards more meaningful also.
It wasn’t just permadeath, but perma-everything.

I actually see PCG and prevention of reverse time-jumps as being inseparable. If
I can save the game, explore a level, restore at the save point and explore the level
again only “correctly”, the entire point of the PCG is missed.

What are your tips for designing games that use PCG?

I think PCG changes how you think about the world-writing for a game.
One of the surprises for us in writing Rogue is how little PCG it took to create a

game which people could play for hundreds of hours. We really barely got working
what we thought was the base game, and suddenly it was popular and everywhere,
before we got to what we had previously thought was going to be the part which
made it interesting.

In a sense a game of Rogue is a collaborative storytelling exercise. You don’t
know how it is going to end, though you suspect it will be a tragedy. People have
imaginations and that can be a huge advantage to game designers. Rogue allowed
people to write their own scripts about what was going on, and provided them all
the action scenes for their story.



232 A Game-designer interviews

In general, is there anything you think could never be generated?

I always dream of PCG worlds as rich and beautiful as the best hand-modeled
worlds. Not because I think the modeling is trivial, or even possible to do, but be-
cause I love the feeling of stepping into something that has never been seen before.
The problem is that a world which takes your breath away is not just doors and walls,
it is cultures and civilizations. Even traditional games rarely invent these things, but
just re-skin the ones we already know about. Can you ever generate something like
walking through a jungle and discovering ruins in a style that no human has seen
before?

A.4 Richard Evans

Would you describe The Sims 3 as doing procedural narrative
generation? What about Versu?

It depends, as always, on your criteria.
The Sims games create a broad range of possible permutations of behaviour. Of-

ten, the generated behaviour sequence is everyday—but sometimes the behaviour
sequence seems to conform to a narrative. The richer the personality model, and the
deeper the social simulation, the more likely this is to happen. Certainly, some peo-
ple did create narratives just by sitting back and watching The Sims 3. For example,
Robin Burkinshaw created Alice and Kev: a great blog describing the plight of a
couple of homeless Sims. He set up an initial situation (a father-daughter pair, who
were both homeless), and then sat back, watching and recording the events as they
occurred.

Versu procedurally generates narrative. At the drama-manager level (the level
of scenes), there is a moderately rigid story graph of scenes with pre- and post-
conditions. But within each particular scene, the individual agents are free to choose
their own actions, based on their own desires.

Interactive storytelling originates in its own separate community.
As interactive stories develop more generative
procedural-storytelling systems, do they become a kind of
procedural-content domain?

Interactive stories often have hand-written content at the drama-manager level, but
variation and procedurality within the scene. This is a limited form of procedurality
existing inside a constrained hand-written framework.



A.4 Richard Evans 233

Was there anything you wanted to procedurally generate in a game
you worked on that you could not do because of algorithmic or
computational limitations?

Yes. One thing I really wanted the computer to do was to generate a social situation
that was already half-way through. So if, for example, the player turned up at a bus-
stop, there might be an argument between a boy and a girl that was already almost
finishing. This ability, to create social situations in media res, is not something that
the Versu simulator is able to do.

What is the most impressive example of procedural content
generation you have seen?

Ooo I don’t know. There are so many recent exciting examples. Procedurally gener-
ated platform levels, music composition, puzzle games—it’s a very exciting time.

Do you have any interesting stories about procedural-content
failures?

The richer the simulation, the more possible causal pathways—and the harder it can
be to understand why something is happening. During development of Versu, I had
a tricky bug where half way through a murder-mystery, the doctor was being rather
rude to my player character. I know that the doctor did not have an abrasive person-
ality, and my character had never done anything rude to the doctor, so it was hard
to see why the doctor was behaving this way. It turned out, after much debugging,
that the reason was this: at the beginning of the game, my player character had been
dismissive to one of the servants who was waiting at the table. The servant had gone
back to the kitchen, and had told the others about my rude behaviour. The doctor,
being a friend of the servant, had believed the servant’s testimony and had formed
a negative judgement about my player’s character. This sort of example shows how
emergence is a double-edged sword: it generates new stories, some of which are not
anticipated—but can also make it harder to understand what is happening.

In general, is there anything in a game you think could never be
procedurally generated?

In Versu, we generated text from templates (e.g. “[X] look[s] towards [Y obj]”),
substituting proper names and pronouns for variables (generating e.g. “Jack looks



234 A Game-designer interviews

towards her”). What would be significantly harder—but also significantly more
flexible—would be to generate text without templates—using e.g. a phrase-structure
grammar and semantic constraints.

A.5 Tarn Adams

Was there anything you wanted to generate in Dwarf Fortress, or
another game you worked on that you could not do because of
algorithmic or computational limitations?

Most of the algorithms are scalable, so it’s really that almost everything needs to be
kept smaller than we’d like. Things like time travel are difficult to do in a proper
fashion in DF since the amount of data is extreme, and even a small perturbation
wouldn’t be believable if it didn’t have a lot of data to back it up. Fluid dynam-
ics are difficult, and our system is pretty lame due to computational problems (and
algorithmic/scientific cluelessness for anything complicated there). All of the con-
versation AI is very basic and will likely be held back by a lack of good ideas on my
part and also my dislike of generating a lot of English sentences. The entire frontier
of what we haven’t done in DF is made up of our limitations along these lines, when
it isn’t just time constraints.

What new design questions has PCG posed for some game you
worked on?

One of the interesting ones is the matter of presentation. If you generate most of the
content in the game, and it doesn’t hew to traditional lines, you have to be careful
about how you unfurl it to the player. We’re just getting started with this considera-
tion now as we start making more generated creatures and plant-life and materials,
but the game would become gray mush if we aren’t mindful as we move away from
pre-defined content. A very simple example is the paragraph description it pops up
whenever a forgotten beast attacks your fortress—if the player were attacked with-
out being forced to look at a description, I think it would become quite confusing
as the random attacks and other properties of the creature come into play, though
there’s a lot of wiggle room and different methods that could be tried out. When we
allow the game to replace regular wilderness creatures or the standard fantasy races
(elf, goblin, etc.) or even the playable race, the roll-out of the random characteristics
is going to be front and center... almost tutorial-worthy in some cases.

There’s also the matter of the realized map area which has come up a lot—
sometimes Dwarf Fortress has pieces of the world loaded up at five different levels
of abstraction (or more?), and each of those need to mesh with each other and be



A.5 Tarn Adams 235

chosen so that crucial details aren’t lost but also so that memory and speed are under
control. This can be difficult to manage, and sometimes we have to make choices
that make the game suffer—this would relate back to the first question regarding
algorithm scalability I guess. You can often accomplish a lot of what you want to
accomplish without doing a perfect job by just scaling back the loaded area a bit,
or keeping an abstract version of a larger area loaded (whether that’s a map area or
some other concept).

What is the most impressive example of procedural content
generation you have seen since your own work?

The cities from Subversion, maybe? Although it wasn’t fully realized, it seems like it
would have been cool. Seeing the game unfold in Drox Operative was neat, although
if you view yourself as an RPG camera in a strategy game there, it probably doesn’t
stand out as an AI example. The complete package was interesting though.

What do you think of the fact that roguelikes have become a genre
of their own? Is PCG in your opinion an essential part of what a
roguelike is?

I don’t know that genres are ever healthy, but it’s cool to see more games. I don’t
have a definition for “roguelikes”, and it’s a popular subject for argument, but I can’t
think of a game without map-related PCG that I’d ever casually call a “roguelike”
to somebody in conversation. Other people focus more on permanent death, save
states, and other features, though, and for all I know Gauntlet is a “roguelike” now.

What are your tips for designing games that use PCG?

For all of these, there’s the caveat that rules are meant to be broken after looking at
the bigger picture, and also that the tips grew out of mistakes I still make which are
evident in my games. So: Don’t simulate more detail than you need to get your point
across— the elements involved in the PCG should be game elements, atmospheric
elements, etc.—if you don’t need the molecules bumping around, invisible to the
player, try to stay away from chewing up computer resources and programming
time putting that in. It’s fine to go one level deeper if the “phenotype” that arises
from your procedural DNA turns out well, but that’s a matter of happy accidents
as much as planning, and you’ll have difficulty refining your game if you subject



236 A Game-designer interviews

yourself to too much chaos theory (or to too much going on that just doesn’t affect
anything).

Keep in mind what the game is trying to accomplish overall. If you can afford
it, don’t substitute crappy PCG for a single, better hand-crafted asset (unless there’s
a really solid counter-balance, say, in replayability, then it is a matter of taste)—
at least if you are polishing up your game, since experimentation is crucial at first
and you might arrive at something really satisfying. PCG does not automatically
increase replayability—a full play through a great pre-defined game is better than
a full play through a shoddy random game that you won’t touch again. I haven’t
always been able to do the following in a timely fashion, since it can hamper exper-
imentation, but if parts of your game are moddable, I think it’s good to keep your
own internal PCG in line with the moddable format (to keep the standards uniform if
anything else)—for example, PCG Dwarf Fortress creatures and materials are made
by producing a text definition which is interpreted in the same way as pre-defined
or modded text definitions.

I also think it is good to try your hand at your own algorithms when possible,
since the output will have more character than something recognizable as Perlin
noise or a Voronoi diagram etc., though just having anything you can iterate on is
probably good enough, and of course existing algorithms form an important part
of your PCG skills to build on. Sometimes you can get better results faster just by
plowing ahead, though, rather than fishing around for something online. Most things
haven’t been tried yet, and there’s a wide frontier of PCG in games to explore.
If you are simulating something that can be related to a real-world process, keep
that process in mind when you are trying to correct unacceptable defects in your
output—the answer is often in some missing variable or relationship that the real-
world analogy makes clear.

Do you have any interesting stories about PCG failures?

They’re mostly interesting from the humor angle, since things often go terribly
wrong. I’m not sure what would be interesting for the experts or people interested
in making better PCG. My process is very iterative, and it’s difficult for me to re-
member discrete instructive moments.

In general, is there anything in a game you think could never be
procedurally generated?

You can view everything produced by people throughout history as procedurally
generated in a larger context, so I wouldn’t leave anything out in general, although
there’s probably a Gödel-ish proof sitting around that you can’t PCG everything
from computer algorithms. Some things are certainly more difficult than others.



A.5 Tarn Adams 237

Prose and conversations and so on can be rough, especially as it relates to AI (since
that’s just the Turing test more or less), and chaotic behavior that comes from many
small parts (like fluids or weather) is probably not possible since you’d need to
simulate the molecular behavior properly to hit upon the actual effects (though you
could use a “good enough” test like the Turing test, for dynamic behaviors vs. hu-
man observation of them). So in any case, the actual limits of PCG probably aren’t
important yet, and I don’t think supposed limitations related to being able to match
pre-defined human artwork in terms of emotional impact or symbolic significance
or whatever else should deter anybody from exploring what’s possible.

Why is PCG not used more?

People are using it now more than I’ve ever seen, so I’m not sure this one is answer-
able from my perspective. If current PCG techniques don’t measure up, it’s prudent
to stick with hand-crafted text and graphics and music from a financial and overall
quality perspective, certainly, rather than trying to tackle everything with PCG to
your satisfaction in the time you have available for your project.

What do you see as current directions for PCG that are worth
investigating?

I think people are already jumping into everything, in one way or another, and noth-
ing should be off limits there. I look at PCG as an almost universal candidate for
feature implementation (since I don’t have useful skills for producing non-PCG ma-
terial), so I wouldn’t close off or prefer any avenue. There’s a good game to be made
regarding any subject, and PCG can be involved in those.


