
Searching*for*Stories*

Yun1Gyung*Cheong,*Byung1Chull*Bae*
Procedural*Content*Genera:on*in*

Games,*2013*

Outline*

•  Stories,*Games,*and*Quests*
•  Story*genera:on*systems*
•  Planning*algorithms*
•  Plan*representa:on*
•  Genera:ng*game*world*automa:cally*
•  Lab:*HTN*plan*

Story*and*Game*
•  Stories*endow*gameplay*meanings*by*providing*
context*and*goals**
–  Set*the*mood*and*general*theme*
– Mo:vate*the*player*to*take*ac:ons*
–  Progress*the*game*(some:mes)*

•  Stories*in*games**
–  Bioshock*Infinite,*The*last*of*us,*Heavy*Rain,*L.A.*
Noire,*Wake*Alan,*To*the*Moon,*The*Secret*of*
Monkey*Island,*The*Walking*Dead,*etc.*

–  Serious*Games*

Story*and*Quests*

•  Integrate*a*storyline*with*gameplay*
– By*giving*a*player*something*to*do*
– E.g.,*Retrieve*an*item,*help*an*NPC,*defeat*a*
villain,*transfer*goods*

•  Two*way*interac:on*
– Quests*are*mo:vated*by*the*storyline**
– Quests*advance*the*story*when*completed*

Why*Generate*Stories?*

•  Replayability*
•  Personaliza:on*

Story*space*explodes*

Authoring*Bo,leneck!!*

Endings*of*Heavy*Rain*
•  +20*endings:*6*different*endings*for*4*characters*

Endings*of*Heavy*Rain*

•  Ethan’s*endings*
–  Ethan*is*in*prison*and*hangs*himself*
–  Ethan*kills*himself*at*his*apartment*when*Shaun*is*not*
saved*

–  Ethan*is*released*from*jail*and*sees*Shaun*
–  Ethan*saves*Shaun*and*lives*in*an*apartment*with*him*
–  Ethan*saves*Shaun*and*lives*with*him*and*Madison*
–  Ethan*can*also*be*killed*by*the*Police*a`er*saving*
Shaun*but*leang*Scob*live.*

hbp://www.gamefaqs.com/ps3/9331231heavy1rain/answers?qid=167784*

Walking*Dead:*Season*1*

hbp://venturebeat.com/2013/03/31/the1walking1dead1season1one1plot1graph/*
*

Story*as*a*Plan*

•  Story:*a*sequence*of*ac:ons*that*transform*the*
world*state*to*a*desired*state*

•  Plan:*a*sequence*of*ac:ons*to*achieve*a*goal*
state*from*an*ini:al*state*
– Ac2on*is*an*instan:a:on*of*an*operator*
–  E.g,*Fly*(?x,*?from,*?to)*

•  PRECONDITIONS:*At(?x,*?from)*
•  EFFECTS:*At(?x,*?to)*

–  E.g.,*Fly*(Jus:n,*CPH,*Paris)*

Planning1based*Story*Genera:on*
Systems*

•  Tale1Spin*(Meehan,*1976)*
–  Simula:on*of*a*character*who*tries*to*solve*a*problem*
–  Inference,*goal1based*planning,*memory,*rela:onship*between*
characters,*character’s*personality*

•  Universe*(Lebowitz,*1985)*
–  Planning*(plot*fragment*containing*sub1goals)*

•  Mimesis*(Young,*2000)*
–  Par:al1order*planning*

•  Interac:ve*Storytelling*(Cavazza*et*al.,*2002)*
–  HTN*(Hierarchical*Task*Network)*

•  Façade*(Mateas*and*Stern,*2003)*
–  Beat*as*a*drama:c*ac:on*that*encodes*goals,*precondi:ons*and*
effects*

Planner*Generated*Story*Examples*

TALE1SPIN*

Mis1Spun*stories*

Planner*Generated*Story*Examples*

TALE1SPIN*

**Par:al1order*Planner*
*
Dr.*Evil*went*to*a*bank.*Dr.*Evil*withdrew*cash*from*his*account*to*buy*a*gun.*Dr.*
Evil*traveled*to*a*gun*store.*Dr.*Evil*bought*a*gun.*Dr.*Evil*traveled*to*the*White*
House.*Dr.*Evil*shot*the*president*with*his*gun.**

Planning*as*a*search*process*

Forward*state1space*search*algorithm*

1.  construct*the*root*node*as*the*ini:al*state*
2.  select*a*non1failure*node**
–  If*such*nodes*are*not*found,*return*‘no*solu:on’*and*exit*
–  if*the*goal*state*is*true,*return*the*path*from*the*ini:al*state*

up*to*the*current*node*as*a*solu:on*and*exit*
3.  select*an*operator*whose*precondi:ons*are*true*
–  if*no*operators*are*applicable,*mark*the*node*as*‘Failure’*and*

go*to*step*2**
4.  construct*children*nodes*by*applying*the*operator**
–  if*the*number*nodes*in*the*graph*exceeds*a*predefined*

maximum*search*nodes,*return*‘over*search*limit’*and*exit*
5.  *go*to*step*2*

State1space*search*example*

Section 11.2. Planning with State-Space Search 383

Init(On(A,Table) ∧ On(B,Table) ∧ On(C, Table)
∧ Block(A) ∧ Block(B) ∧ Block(C)
∧ Clear(A) ∧ Clear(B) ∧ Clear(C))

Goal(On(A, B) ∧ On(B, C))
Action(Move(b, x, y),
PRECOND: On(b, x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧

(b "= x) ∧ (b "= y) ∧ (x "= y),
EFFECT: On(b, y) ∧ Clear(x) ∧ ¬ On(b, x) ∧ ¬ Clear(y))

Action(MoveToTable(b, x),
PRECOND: On(b, x) ∧ Clear(b) ∧ Block(b) ∧ (b "= x),
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬ On(b, x))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [Move(B,Table, C),Move(A,Table, B)].

(a)

(b)

At(P1, A)

Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

At(P1, B)
At(P2, B)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

Figure 11.5 Two approaches to searching for a plan. (a) Forward (progression) state-space
search, starting in the initial state and using the problem’s actions to search forward for the
goal state. (b) Backward (regression) state-space search: a belief-state search (see page 84)
starting at the goal state(s) and using the inverse of the actions to search backward for the
initial state.

We start in the problem’s initial state, considering sequences of actions until we find a se-
quence that reaches a goal state. The formulation of planning problems as state-space search
problems is as follows:

• The initial state of the search is the initial state from the planning problem. In general,
each state will be a set of positive ground literals; literals not appearing are false.

Forward**
state1space**
search*

GOAL:*At(P1,*B),*At(P2,*B)*

State1space*search*example*

Section 11.2. Planning with State-Space Search 383

Init(On(A,Table) ∧ On(B,Table) ∧ On(C, Table)
∧ Block(A) ∧ Block(B) ∧ Block(C)
∧ Clear(A) ∧ Clear(B) ∧ Clear(C))

Goal(On(A, B) ∧ On(B, C))
Action(Move(b, x, y),
PRECOND: On(b, x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧

(b "= x) ∧ (b "= y) ∧ (x "= y),
EFFECT: On(b, y) ∧ Clear(x) ∧ ¬ On(b, x) ∧ ¬ Clear(y))

Action(MoveToTable(b, x),
PRECOND: On(b, x) ∧ Clear(b) ∧ Block(b) ∧ (b "= x),
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬ On(b, x))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [Move(B,Table, C),Move(A,Table, B)].

(a)

(b)

At(P1, A)

Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

At(P1, B)
At(P2, B)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

Figure 11.5 Two approaches to searching for a plan. (a) Forward (progression) state-space
search, starting in the initial state and using the problem’s actions to search forward for the
goal state. (b) Backward (regression) state-space search: a belief-state search (see page 84)
starting at the goal state(s) and using the inverse of the actions to search backward for the
initial state.

We start in the problem’s initial state, considering sequences of actions until we find a se-
quence that reaches a goal state. The formulation of planning problems as state-space search
problems is as follows:

• The initial state of the search is the initial state from the planning problem. In general,
each state will be a set of positive ground literals; literals not appearing are false.

Section 11.2. Planning with State-Space Search 383

Init(On(A,Table) ∧ On(B,Table) ∧ On(C, Table)
∧ Block(A) ∧ Block(B) ∧ Block(C)
∧ Clear(A) ∧ Clear(B) ∧ Clear(C))

Goal(On(A, B) ∧ On(B, C))
Action(Move(b, x, y),
PRECOND: On(b, x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧

(b "= x) ∧ (b "= y) ∧ (x "= y),
EFFECT: On(b, y) ∧ Clear(x) ∧ ¬ On(b, x) ∧ ¬ Clear(y))

Action(MoveToTable(b, x),
PRECOND: On(b, x) ∧ Clear(b) ∧ Block(b) ∧ (b "= x),
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬ On(b, x))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [Move(B,Table, C),Move(A,Table, B)].

(a)

(b)

At(P1, A)

Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

At(P1, B)
At(P2, B)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

Figure 11.5 Two approaches to searching for a plan. (a) Forward (progression) state-space
search, starting in the initial state and using the problem’s actions to search forward for the
goal state. (b) Backward (regression) state-space search: a belief-state search (see page 84)
starting at the goal state(s) and using the inverse of the actions to search backward for the
initial state.

We start in the problem’s initial state, considering sequences of actions until we find a se-
quence that reaches a goal state. The formulation of planning problems as state-space search
problems is as follows:

• The initial state of the search is the initial state from the planning problem. In general,
each state will be a set of positive ground literals; literals not appearing are false.

Forward**
state1space**
search*

Backward**
state1space**
search*

GOAL:*At(P1,*B),*At(P2,*B)*

1.  construct*the*root*node*as*the*planning*problem*
2.  select*a*non1failure*node*(based*on*its*heuris:c*value)**
3.  select*a*flaw*in*the*node*

–  if*no*flaws*are*found,*return*the*node*as*a*solu:on*and*exit**
4.  construct*children*nodes*by*repairing*the*flaw*

–  if*the*flaw*is*an*open*precondi:on*
•  a)*establishes*a*causal*link*from*an*exis:ng*plan*step,*or**
•  b)*adds*a*new*plan*step*whose*effects*establish*the*precondi:on**

–  if*the*flaw*is*a*threat*
•  a)*add*a*temporal*ordering*constraint*so*that*the*threatened*causal*link*is*not*

intervened,*or**
•  b)*add*a*binding*constraint*to*separate*the*threatening*step*from*the*steps*

involved*in*the*threatened*causal*link.**

–  if*the*flaw*is*not*repairable,*mark*the*node*as*‘Failure’*
–  if*the*number*nodes*in*the*graph*exceeds*a*predefined*maximum*

search*nodes,*return*‘over*the*search*limit’*and*exit*
5.  go*to*step*2*

Plan1space*Search*

G I

#1 An empty plan with the initial step
and the goal step only
p is true in the initial state and
the goal literal is g

g*p

G I

#1

G I

#3

G S1 I

#2

An empty plan with the initial step
and the goal step only
p is true in the initial state and
the goal literal is g

Repair an open precondition g flaw
With the addition of Step S1

g*p

g*p g*p S2

Repair an open precondition g flaw
With the addition of Step S2

p* r*

G I

#1

G I

#3

G S1 I

#2

An empty plan with the initial step
and the goal step only
p is true in the initial state and
the goal literal is g

Repair an open precondition g flaw
With the addition of Step S1

Repair an precondition p flaw with establishing
the causal link from the initial step to S1

g*p

g*p g*p S2

Repair an open precondition g flaw
With the addition of Step S2

p*

G S1 I

#4

g*p p*

r*

G I

#5

g*p S2 r*S3
P
c*

Solution

Repair an precondition r flaw
with the addition of Step 3

G I

#1

G I

#3

G S1 I

#2

An empty plan with the initial step
and the goal step only
p is true in the initial state and
the goal literal is g

Repair an open precondition g flaw
With the addition of Step S1

Repair an precondition p flaw with establishing
the causal link from the initial step to S1

g*p

g*p g*p S2

Repair an open precondition g flaw
With the addition of Step S2

p*

G S1 I

#4

g*p p*

r*

G I

#5

g*p S2 r*S3
P
c*

Solution

Repair an precondition r flaw
with the addition of Step 3

G I

#6

g*p S2 r*S3
p
c*

Repair an precondition p flaw with establishing
the causal link from the initial step to S3

Pick an precondition flaw c to fix
but failed to find an operator that
has c as its effect.

G I

#7

g*p S2 r*S3
P
c*

Terminal node

Total1order*vs.*Par:al1order*plan*
•  A*total1order*plan*

–  specifies*the*temporal*ordering*constraint*of*every*step*in*the*
plan**

•  A*par:al1order*plan*
–  specifies*only*those*temporal*orderings*that*must*be*
established*to*resolve*threats.**

•  Example*goal:*purchasing*milk*and*bread*in*a*grocery*store*
–  A*total1order*plan:*a)*to*purchase*milk*first*and*to*purchase*
bread,*and*b)*to*purchase*bread*first*and*to*purchase*milk.**

–  A*par:al1order*plan*does*not*specify*the*ordering*constraint*
and*defers*the*decision*un:l*when*it*is*necessary.**

Heuris:c*Func:on*

•  Es:mates*the*length*or*the*cost*of*the*
solu:on*
– E.g.,*the*length*of*the*current*par:al*plan*+*
number*of*flaws*

– E.g.,*the*length*of*the*current*plan*+*number*of*
states*that*are*different*from*the*goal*state**

POP*is*computa:onally*expensive*

Domain*Model*

•  A*library*of*plan*operator*templates*that*
encode*knowledge*in*a*par:cular*domain*

•  Example*
– Alex,*is*on*the*roo#op%of%a%building%(ini0al%state).*
His*goal*is*to*be*on%the%ground%level%(goal%state)*of*
the*building*without*being*injured*(goal%state).**

– Available*op:ons*are**
•  take*a*li`*(Plan*1)*
•  walk*down*the*stairs*(Plan*2)*
•  jump*from*the*roof*(Plan*3)*

STRIPS*

•  Stanford*Research*Ins:tute*Problem*Solver*(Fikes*
and*Nilsson,*1971)*

•  A*state*representa:on*
–  Proposi:onal*literals*or*first1order*logic*literals*

•  Closed1world*assump:on*
–  condi:ons*that*are*not*explicitly*specified*are*
considered*as*false*
•  only*posi:ve*literals*are*used*for*the*descrip:on*of*ini:al*
states,*goal*states,*and*precondi:ons*

•  Effects*may*include*nega:ve*literals*

STRIPS*representa:on*example*
•  Problem:*Alex*on*the*top*of*a*building*wants*to*be*on*
the*ground*level*

•  Ini:al*state*representa:on*
–  At(Alex,*Roo`op)*�*Alive(Alex)*�*Walkable*(Roo`op,*
Ground)*�*Person(Alex)*�*Place(Roo`op)*�*Place(Ground)**

•  Goal*State*representa:on*
–  *At(Alex,*Ground)*�*Alive(Alex)*

•  Ac:on*representa:on*
–  Ac:on*(WalkStairs*(p,*from,*to))***************

•  PRECONDITION:*At*(p,*from)*�*Walkable*(from,*to)*�*Person(p)*�*
Place*(from)*�*Place*(to)*

•  EFFECT:*¬At(p,*from)*�*At*(p,*to)*

ADL*(Ac:on*Descrip:on*Language)*
•  More*expressive*than*STRIPS*
•  Open1world*assump:on*
–  Both*posi:ve*and*nega:ve*literals*are*allowed*

•  Quan:fied*variables:*All,*existen:al***
•  Combina:on*of*conjunc:on*and*disjunc:on*are*
allowed*in*the*goal*state*descrip:on.*

•  Condi:onal*effects*are*allowed.*
•  Equality*and*non1equality*predicates*and*type*in*
variable**
–  e.g.,*(from*≠to)*
–  e.g,*(p:*Person),*(from:*Loca:on))*

ADL*representa:on*example*
•  Ini:al*state*representa:on*

–  At(Alex,*Roo`op)*�*¬Dead(Alex)*�*Walkable*(Roo`op,*Ground)*�*
Person(Alex)*�*Place(Roo`op)*�*Place(Ground)*�*Wearing(Alex,*
Parachute)*�*¬Injured(Alex)*�*Thing(Parachute)*

•  Goal*State*representa:on*
–  At(Alex,*Ground)*�*¬Dead(Alex)*�*¬Injured(Alex)*

•  Ac:on*representa:on*******************
–  Ac:on*(WalkStairs*(p:*Person,*from:*Place,*to:*Place))*

•  PRECONDITION:*At*(p,*from)*�*(from*≠*to)*�*(Walkable*(from,*to)*�*
¬Working(Li`))**

•  EFFECT:*¬At(p,*from)*�*At*(p,*to)**
–  Ac:on*(JumpFromRoo`op*(p:*Person,*from:*Place,*to:*Place,*

sth:Thing))*
•  PRECONDITION:*At*(p,*from)*�*(from*≠*to)*�*Emergent(p)**
•  EFFECT:*¬At(p,*from)*�*At*(p,*to)*�*(when*Wearing(p,*Parachute):*¬Dead(p)*�*

¬Injured(p))*

A*Story*Plan*

•  A*story*can*be*represented*as*a*par:al1order*
plan,*a*tuple*<S,%O,%C>*where**
– S*is*a*series*of*events*(i.e.,*instan:ated*plan*
operators),**

– O*is*temporal*ordering*informa:on*represented*as*
(s1*<*s2)*where*s1*precedes*s2,**

– C*is*a*list*of*causal*links*where*a*causal*link*is*
represented*by*(s,*t;*c)*nota:ng*a*plan*step*s*
establishes*c,*a*precondi:on*of*a*step*t*

HTN*
1.  construct*the*root*node*with*an*abstract*operator*which*performs*

the*given*goal*task*
2.  select*an*abstract*operator*of*which*precondi:ons*are*true**

–  if*no*such*abstract*operator*is*found,*return*failure*
3.  decompose*the*abstract*operator*into*subtasks*as*encoded*in*the*

ac:on*schema*
–  if*all*the*children*of*the*node*are*primi:ve*ac:ons,*return*the*

primi:ve*ac:ons*as*a*solu:on*
4.  go*to*step*2**

•  Fast,*prac:cal,*straighuorward*!*popular*in*industry*
•  Recipes,*interac:on*between*subtasks*

HTN*Representa:on*example*(Tate,*
1977)*

C o n d i t i o n s o n nodes i n t h e e x p a n s i o n a r e g i v e n
t y p e s . SUPERVISED c o n d i t i o n s a r e made t r u e w i t h -
i n t h e e x p a n s i o n o f t h e t a s k (e . g . t h e ACTION
« P A I N T > > (6) , a c h i e v e s t h e SUPERVISED c o n d i t i o n
<<PAINTED» on ACTION 5) . UNSUPERVISED c o n d i t i o n s
a r e made t r u e b y o t h e r e x p e r t s (m a i n l y h e r e b y a n
" INSTALL SERVICES" e x p e r t) . A n o t h e r c o n d i t i o n
t y p e , "USEWHEN", w o u l d say t h a t an ACTSCHEMA c o n -
t a i n i n g i t s h o u l d n o t b e used u n l e s s t h e c o n d i t i o n
was a l r e a d y t r u e . I t i s a l s o p o s s i b l e t o s p e c i f y
t h e EFFECTS on a node o f t h e e x p a n s i o n . I n t h e
case o f t h e DECOR schema t h e s e w o u l d be d e f i n e d by
l o w e r l e v e l a c t i o n s .

2 . 2 The n o n - l i n e a r p l a n n e r (NONLIN)
A p l a n n e r , NONLIN, has been i m p l e m e n t e d w h i c h

can g e n e r a t e p l a n s f r o m t a s k d e s c r i p t i o n s g i v e n i n
t h e Task F o r m a l i s m . I t g e n e r a t e s a p l a n a t p r o -
g r e s s i v e l y g r e a t e r l e v e l s o f d e t a i l and can h a n d l e
i n t e r a c t i o n s be tween s u b - p l a n s t o p r o d u c e a p l a n
a s a p a r t i a l l y - o r d e r e d n e t w o r k o f a c t i o n s . The
a l g o r i t h m s emp loyed i n t h e p l a n n e r have been d e -
s i g n e d s o t h a t o r d e r i n g c h o i c e s a r e a v o i d e d where
p o s s i b l e . However , where a c h o i c e does become
n e c e s s a r y a l l c h o i c e p o i n t s a r e k e p t f o r l a t e r
a n a l y s i s o r r e - p l a n n i n g . A s i m p l e c l e a r r e p r e -
s e n t a t i o n o f t h e g o a l s t r u c t u r e (GOST) o f a p l a n
i s k e p t (t h e c o n d i t i o n s o n nodes o f t h e n e t w o r k
t o g e t h e r w i t h t h e p o i n t s where t h e c o n d i t i o n s a r e
a c h i e v e d) . An example of a GOST e n t r y d u r i n g a

house b u i l d i n g t a s k m i g h t b e

«SUPERVISED «SCAFFOLDING ERECTED» TRUE 6>>
w i t h v a l u e [4] .

T h i s w o u l d mean t h a t «SCAFFOLDING ERECTED>> had
to be t r u e a t node 6 and was made t r u e a t node 4
(nodes in a n e t w o r k a r e numbe red) . Node 4 h e r e
w i l l b e r e f e r r e d t o a s a " c o n t r i b u t o r " t o s a t i s -
f y i n g t h e c o n d i t i o n . I t i s p o s s i b l e t o have
s e v e r a l p o t e n t i a l c o n t r i b u t o r s . The GOST t h u s
s p e c i f i e s a s e t o f " r a n g e s " f o r w h i c h p a t t e r n s
have a c e r t a i n v a l u e . Goa l s t r u c t u r e p r o v i d e s
i n f o r m a t i o n a b o u t a p l a n w h i c h w o u l d b e d i f f i c u l t
t o e x t r a c t f r o m t h e d e t a i l o f t h e p l a n i t s e l f .
The use o f g o a l s t r u c t u r e t o d i r e c t s e a r c h i n a
p r o b l e m s o l v e r was f i r s t i n v e s t i g a t e d i n T a t e
(1 9 7 5) . The g o a l s t r u c t u r e o f a p l a n n o t o n l y

p r o v i d e s i n f o r m a t i o n t o a i d t h e s e a r c h o f t h e
p l a n n e r , i t c o n t a i n s v a l u a b l e i n f o r m a t i o n f o r mon-
i t o r i n g t h e e x e c u t i o n o f a p l a n .

2 .3 Compar ison w i t h NOAH
NONLIN, a s m e n t i o n e d p r e v i o u s l y , i s based u p -

on t h e work o f S a c e r d o t i (1975a) on t h e NOAH p l a n -
n e r . We a c c e p t t h e c o n c e p t o f S a c e r d o t i ' s w o r k :
t h a t o r d e r i n g c o n s t r a i n t s s h o u l d o n l y b e imposed
be tween t h e a c t i o n s c o m p r i s i n g a p l a n i f t h e s e a r e
n e c e s s a r y f o r t h e a c h i e v e m e n t o f t h e o v e r a l l p u r -
pose o f t h e p l a n . However , t h e NOAH p rog ram s t i l l
had t o make c h o i c e s a s t o t h e o r d e r t h a t a c t i o n s
were t o b e p l a c e d i n a p l a n t o c o r r e c t f o r i n t e r -
a c t i o n s . NOAH made t h i s c h o i c e i n one p a r t i c u l a r
way . I t d i d n o t keep any b a c k t r a c k c h o i c e p o i n t s ,
s o t h i s d e c i s i o n , once made, was i r r e v e r s i b l e .
T h i s l e a d s t o a n i n c o m p l e t e n e s s o f t h e s e a r c h
space w h i c h can r e n d e r some s i m p l e b l o c k p u s h i n g
t a s k s u n a c h i e v e a b l e by NOAH (see s e c t i o n 10 o f
T a t e , 1975 f o r a f u l l a c c o u n t) . NONLIN i s c a p -
a b l e o f c o r r e c t i n g f o r a n i n t e r a c t i o n b y s u g g e s t -
i n g two o r d e r i n g s (w h i c h a r e s u f f i c i e n t t o e n s u r e
t h e i n c o m p l e t e n e s s o f NOAH m e n t i o n e d above i s
a v o i d e d — see s e c t i o n 4 . 4) . O t h e r o p e r a t i o n s
p e r f o r m e d b y NOAH d e t e r m i n i s t i c a l l y (i . e . w i t h o u t
g e n e r a t i n g a l t e r n a t i v e c o u r s e s o f a c t i o n) s h o u l d
a l s o be c o n s i d e r e d as c h o i c e p o i n t s . Two examples
o f t h i s a r e

a) t h e c h o i c e o f w h i c h method t o use t o expand a
node where a l t e r n a t i v e s e x i s t , and
b) t h e d e c i s i o n t o merge two nodes i n a n e t w o r k .
I f such d e c i s i o n s c a n n o t b e undone some p r o b l e m s
a r e u n s o l v a b l e . NONLIN keeps such c h o i c e p o i n t s .
W e f o u n d i t i m p r a c t i c a l t o s t o r e a l l a l t e r n a t i v e s
in a s i n g l e AND/OR n e t w o r k . I n s t e a d , we make
c h o i c e s a s t h e y become n e c e s s a r y b u t keep a l t e r n -
a t i v e s f o r l a t e r r e - u s e . A s i n NOAH, w e e x p e c t
t h a t t h e f i r s t c h o i c e t a k e n s h o u l d l e a d t o a s o l u -
t i o n s i n c e many o f t h e c h o i c e s made b y l i n e a r
p l a n n e r s have been a v o i d e d . I n d e e d , i f f a i l u r e
o c c u r s w i t h t h e f i r s t p l a n b e i n g c o n s i d e r e d , o u r
e x p e r i e n c e i s t h a t b a c k t r a c k i n g can l e a d t o l o n g
s e a r c h e s s i n c e many c o n s e q u e n t o r d e r i n g c h o i c e s
may have been made because of an i n a p p r o p r i a t e
c h o i c e e a r l y i n t h e g e n e r a t i o n o f t h e p l a n . W e
a r e t a c k l i n g t h i s p r o b l e m b y t h e use o f a " D e -
c i s i o n G raph " (see D a n i e l , 1 9 7 7) .

NOAH had no way to d i s t i n g u i s h be tween i ra -

A p p l i c a t i o n s - 2 : Tate
889

We i l l u s t r a t e t h e f o r m of TF by an "ACTSCHEMA"
f r o m a s i m p l e house b u i l d i n g t a s k (t h e c o m p l e t e
l i s t i n g i s g i v e n i n T a t e , 1 9 7 6) .
ACTSCHEMA DECOR

PATTERN «DECORATE»
EXPANSION
1 ACTION <<FASTEN PLASTER AND PLASTER BOARD»
2 ACTION «POUR BASEMENT FLOOR>>
3 ACTION <<LAY FINISHED FLOORING»
4 ACTION <<FINISH CARPENTRY>>
5 ACTION «SAND AND VARNISH FLOORS>>
6 ACTION « P A I N T »
ORDERINGS 1 >3 6 >5 SEQUENCE 2 TO 5
CONDITIONS
UNSUPERVISED «ROUGH PLUMBING INSTALLED» AT 1
UNSUPERVISED «ROUGH WIRING INSTALLED» AT 1
UNSUPERVISED « A I R CONDITIONING INSTALLED» AT 1
UNSUPERVISED «DRAINS INSTALLED» AT 2
UNSUPERVISED «PLUMBING F I N I S H E D » AT 6
SUPERVISED «PLASTERING FINISHED>> AT 3 FROM 1
SUPERVISED <<BASEMENT FLOOR LAYED» AT 3 FROM 2
SUPERVISED «FLOORING F I N I S H E D » AT 4 FROM 3
SUPERVISED «CARPENTRY F I N I S H E D » AT 5 FROM 4
SUPERVISED <<PAINTED» AT 5 FROM 6.

END;
T h i s schema says t h a t a n ACTION node w i t h p a t t e r n
<<DECORATE» can be expanded i n t o 6 l o w e r l e v e l
a c t i o n s w i t h t h e f o l l o w i n g p a r t i a l o r d e r i n g :

NONLIN:*Genera:ng*Project*Network,*Aus:n*Tate*(1977)*

C o n d i t i o n s o n nodes i n t h e e x p a n s i o n a r e g i v e n
t y p e s . SUPERVISED c o n d i t i o n s a r e made t r u e w i t h -
i n t h e e x p a n s i o n o f t h e t a s k (e . g . t h e ACTION
« P A I N T > > (6) , a c h i e v e s t h e SUPERVISED c o n d i t i o n
<<PAINTED» on ACTION 5) . UNSUPERVISED c o n d i t i o n s
a r e made t r u e b y o t h e r e x p e r t s (m a i n l y h e r e b y a n
" INSTALL SERVICES" e x p e r t) . A n o t h e r c o n d i t i o n
t y p e , "USEWHEN", w o u l d say t h a t an ACTSCHEMA c o n -
t a i n i n g i t s h o u l d n o t b e used u n l e s s t h e c o n d i t i o n
was a l r e a d y t r u e . I t i s a l s o p o s s i b l e t o s p e c i f y
t h e EFFECTS on a node o f t h e e x p a n s i o n . I n t h e
case o f t h e DECOR schema t h e s e w o u l d be d e f i n e d by
l o w e r l e v e l a c t i o n s .

2 . 2 The n o n - l i n e a r p l a n n e r (NONLIN)
A p l a n n e r , NONLIN, has been i m p l e m e n t e d w h i c h

can g e n e r a t e p l a n s f r o m t a s k d e s c r i p t i o n s g i v e n i n
t h e Task F o r m a l i s m . I t g e n e r a t e s a p l a n a t p r o -
g r e s s i v e l y g r e a t e r l e v e l s o f d e t a i l and can h a n d l e
i n t e r a c t i o n s be tween s u b - p l a n s t o p r o d u c e a p l a n
a s a p a r t i a l l y - o r d e r e d n e t w o r k o f a c t i o n s . The
a l g o r i t h m s emp loyed i n t h e p l a n n e r have been d e -
s i g n e d s o t h a t o r d e r i n g c h o i c e s a r e a v o i d e d where
p o s s i b l e . However , where a c h o i c e does become
n e c e s s a r y a l l c h o i c e p o i n t s a r e k e p t f o r l a t e r
a n a l y s i s o r r e - p l a n n i n g . A s i m p l e c l e a r r e p r e -
s e n t a t i o n o f t h e g o a l s t r u c t u r e (GOST) o f a p l a n
i s k e p t (t h e c o n d i t i o n s o n nodes o f t h e n e t w o r k
t o g e t h e r w i t h t h e p o i n t s where t h e c o n d i t i o n s a r e
a c h i e v e d) . An example of a GOST e n t r y d u r i n g a

house b u i l d i n g t a s k m i g h t b e

«SUPERVISED «SCAFFOLDING ERECTED» TRUE 6>>
w i t h v a l u e [4] .

T h i s w o u l d mean t h a t «SCAFFOLDING ERECTED>> had
to be t r u e a t node 6 and was made t r u e a t node 4
(nodes in a n e t w o r k a r e numbe red) . Node 4 h e r e
w i l l b e r e f e r r e d t o a s a " c o n t r i b u t o r " t o s a t i s -
f y i n g t h e c o n d i t i o n . I t i s p o s s i b l e t o have
s e v e r a l p o t e n t i a l c o n t r i b u t o r s . The GOST t h u s
s p e c i f i e s a s e t o f " r a n g e s " f o r w h i c h p a t t e r n s
have a c e r t a i n v a l u e . Goa l s t r u c t u r e p r o v i d e s
i n f o r m a t i o n a b o u t a p l a n w h i c h w o u l d b e d i f f i c u l t
t o e x t r a c t f r o m t h e d e t a i l o f t h e p l a n i t s e l f .
The use o f g o a l s t r u c t u r e t o d i r e c t s e a r c h i n a
p r o b l e m s o l v e r was f i r s t i n v e s t i g a t e d i n T a t e
(1 9 7 5) . The g o a l s t r u c t u r e o f a p l a n n o t o n l y

p r o v i d e s i n f o r m a t i o n t o a i d t h e s e a r c h o f t h e
p l a n n e r , i t c o n t a i n s v a l u a b l e i n f o r m a t i o n f o r mon-
i t o r i n g t h e e x e c u t i o n o f a p l a n .

2 .3 Compar ison w i t h NOAH
NONLIN, a s m e n t i o n e d p r e v i o u s l y , i s based u p -

on t h e work o f S a c e r d o t i (1975a) on t h e NOAH p l a n -
n e r . We a c c e p t t h e c o n c e p t o f S a c e r d o t i ' s w o r k :
t h a t o r d e r i n g c o n s t r a i n t s s h o u l d o n l y b e imposed
be tween t h e a c t i o n s c o m p r i s i n g a p l a n i f t h e s e a r e
n e c e s s a r y f o r t h e a c h i e v e m e n t o f t h e o v e r a l l p u r -
pose o f t h e p l a n . However , t h e NOAH p rog ram s t i l l
had t o make c h o i c e s a s t o t h e o r d e r t h a t a c t i o n s
were t o b e p l a c e d i n a p l a n t o c o r r e c t f o r i n t e r -
a c t i o n s . NOAH made t h i s c h o i c e i n one p a r t i c u l a r
way . I t d i d n o t keep any b a c k t r a c k c h o i c e p o i n t s ,
s o t h i s d e c i s i o n , once made, was i r r e v e r s i b l e .
T h i s l e a d s t o a n i n c o m p l e t e n e s s o f t h e s e a r c h
space w h i c h can r e n d e r some s i m p l e b l o c k p u s h i n g
t a s k s u n a c h i e v e a b l e by NOAH (see s e c t i o n 10 o f
T a t e , 1975 f o r a f u l l a c c o u n t) . NONLIN i s c a p -
a b l e o f c o r r e c t i n g f o r a n i n t e r a c t i o n b y s u g g e s t -
i n g two o r d e r i n g s (w h i c h a r e s u f f i c i e n t t o e n s u r e
t h e i n c o m p l e t e n e s s o f NOAH m e n t i o n e d above i s
a v o i d e d — see s e c t i o n 4 . 4) . O t h e r o p e r a t i o n s
p e r f o r m e d b y NOAH d e t e r m i n i s t i c a l l y (i . e . w i t h o u t
g e n e r a t i n g a l t e r n a t i v e c o u r s e s o f a c t i o n) s h o u l d
a l s o be c o n s i d e r e d as c h o i c e p o i n t s . Two examples
o f t h i s a r e

a) t h e c h o i c e o f w h i c h method t o use t o expand a
node where a l t e r n a t i v e s e x i s t , and
b) t h e d e c i s i o n t o merge two nodes i n a n e t w o r k .
I f such d e c i s i o n s c a n n o t b e undone some p r o b l e m s
a r e u n s o l v a b l e . NONLIN keeps such c h o i c e p o i n t s .
W e f o u n d i t i m p r a c t i c a l t o s t o r e a l l a l t e r n a t i v e s
in a s i n g l e AND/OR n e t w o r k . I n s t e a d , we make
c h o i c e s a s t h e y become n e c e s s a r y b u t keep a l t e r n -
a t i v e s f o r l a t e r r e - u s e . A s i n NOAH, w e e x p e c t
t h a t t h e f i r s t c h o i c e t a k e n s h o u l d l e a d t o a s o l u -
t i o n s i n c e many o f t h e c h o i c e s made b y l i n e a r
p l a n n e r s have been a v o i d e d . I n d e e d , i f f a i l u r e
o c c u r s w i t h t h e f i r s t p l a n b e i n g c o n s i d e r e d , o u r
e x p e r i e n c e i s t h a t b a c k t r a c k i n g can l e a d t o l o n g
s e a r c h e s s i n c e many c o n s e q u e n t o r d e r i n g c h o i c e s
may have been made because of an i n a p p r o p r i a t e
c h o i c e e a r l y i n t h e g e n e r a t i o n o f t h e p l a n . W e
a r e t a c k l i n g t h i s p r o b l e m b y t h e use o f a " D e -
c i s i o n G raph " (see D a n i e l , 1 9 7 7) .

NOAH had no way to d i s t i n g u i s h be tween i ra -

A p p l i c a t i o n s - 2 : Tate
889

We i l l u s t r a t e t h e f o r m of TF by an "ACTSCHEMA"
f r o m a s i m p l e house b u i l d i n g t a s k (t h e c o m p l e t e
l i s t i n g i s g i v e n i n T a t e , 1 9 7 6) .
ACTSCHEMA DECOR

PATTERN «DECORATE»
EXPANSION
1 ACTION <<FASTEN PLASTER AND PLASTER BOARD»
2 ACTION «POUR BASEMENT FLOOR>>
3 ACTION <<LAY FINISHED FLOORING»
4 ACTION <<FINISH CARPENTRY>>
5 ACTION «SAND AND VARNISH FLOORS>>
6 ACTION « P A I N T »
ORDERINGS 1 >3 6 >5 SEQUENCE 2 TO 5
CONDITIONS
UNSUPERVISED «ROUGH PLUMBING INSTALLED» AT 1
UNSUPERVISED «ROUGH WIRING INSTALLED» AT 1
UNSUPERVISED « A I R CONDITIONING INSTALLED» AT 1
UNSUPERVISED «DRAINS INSTALLED» AT 2
UNSUPERVISED «PLUMBING F I N I S H E D » AT 6
SUPERVISED «PLASTERING FINISHED>> AT 3 FROM 1
SUPERVISED <<BASEMENT FLOOR LAYED» AT 3 FROM 2
SUPERVISED «FLOORING F I N I S H E D » AT 4 FROM 3
SUPERVISED «CARPENTRY F I N I S H E D » AT 5 FROM 4
SUPERVISED <<PAINTED» AT 5 FROM 6.

END;
T h i s schema says t h a t a n ACTION node w i t h p a t t e r n
<<DECORATE» can be expanded i n t o 6 l o w e r l e v e l
a c t i o n s w i t h t h e f o l l o w i n g p a r t i a l o r d e r i n g :

HTN*example*(Cavazza*et*al.,*2002)*

subtasks of the HTN and narrative functions
described in narratology that stand for key
narrative actions seen from a given charac-
ter’s perspective. The difference lies in the
fact that the agentive (or predicative) struc-
ture for the equivalent narrative functions lies
outside the corresponding portion of the
HTN, in the interaction with narrative objects
and other characters filling up the roles for
that narrative function. For instance, when
seeking information about Rachel, Ross
could talk to her friend Phoebe. If he talks to
Phoebe, she will complement the agentive
role of the corresponding narrative function.
Also, whenever multiple characters interact,
they potentially instantiate narrative func-
tions “bottom-up” through the conjunction
of activities from their respective HTNs.

HTN planning
Interactive storytelling requires interleav-

ing planning and execution.2 We have thus
devised a search algorithm to produce a suit-
able plan from the HTN. Exploiting our total
ordering assumption and subtask indepen-
dence, the algorithm searches the HTN
depth-first and left-to-right and executes any

primitive action it encounters in the process.
It allows backtracking when primitive
actions fail (such as following competition
for action resources by other agents, or user
intervention). In addition, it attaches heuris-
tic values to the various subtasks, so forward
search can use these values to select a sub-
task decomposition (this is similar to the use
of heuristics that Peter Weyhrauch described
to “bias” a story instantiation9).

An essential aspect of HTN planning is that
it is based on forward search while being goal-
directed at the same time, because the top-
level task is the main goal. (Other recent for-
ward-search planning systems, such as the
Heuristic Search Planner10 or MinMin,11

search forward from the initial state to the
goal.) Consequently, because the system is
planning forward from the initial state and
expands the subtasks left-to-right, the current
state of the world is always known (in this
case, the current state reached by the plot).

When initially describing the roles, we
chose to adopt total ordering of subtasks.
Total-order HTN planning precludes the pos-
sibility of interleaving subtasks from differ-
ent primitive tasks, thus eliminating task inter-

action to a large extent.6 In the case of story-
telling, the subtasks are largely independent
because they represent the story’s stages.
Decomposability of the problem space derives
from the inherent decomposition of the story
into various stages or scenes—a classical rep-
resentation for stories. Our use of HTN is cur-
rently associated with substantial simplifica-
tions of the associated planning problems,
such as subgoal independence, empty delete
lists, and total ordering of subtasks at AND
nodes. However, this approach to planning
seems consistent with the knowledge-inten-
sive nature of interactive storytelling and some
of its inherent properties, such as the tempo-
ral ordering of various scenes. Other planning
techniques—ones more oriented toward a
problem-solving approach, for example—
could be used, such as one that manages
resources and orders actions (see, for instance,
D. Weld’s “dinner date” example, which
describes planning in a domain similar to our
sitcom example12). However, it is still unclear
under which conditions a more generic
approach will benefit interactive storytelling.

In addition to their top-down plans, char-
acters also react to specific events. For exam-

JULY/AUGUST 2002 computer.org/intelligent 19

Ring

Go to
Rachel

Give
gift

Go to
Rachel

Give
gift

Give
gift

Select
gift

Be
friendly

Go to
Rachel

Say
nice things

to her

Send
message

Go to
friends

Befriend
her

friends

Send
message

Offer
gift

Gain
affection

Go to
diary

Pick up
diary

Read
diary

Go to
phone

Dial phone
diary

Send
message

Borrow
 her diary

Acqiure
infor-

mation

Phone
her mom

Go to
friend

Ask her
friend

Send
message

Ask her

Take
her out

Send
message

Ask
someone

else

Get
reply

Send
message

Ask
yourself

Get
reply

Attract her
attention

Go to
place

Sing her
favorite
song

Send
message

Isolate
her

Go to
worst enemy

Talk to
her worst

enemy

Send
message

Ask
them

Go to
others

Ask
them

Send
message

Take her
aside

Go to
telephone

Phone

Send
message

Turn
towards her

Shout

Send
message

Go to
diary

Pick up
diary

Read
diary

Go to
phone

Dial phone
number

Send
message

Borrow
 her diary

Acqiure
infor-

mation

Phone
her mom

Go to
friend

:Friend_Free :Friend_Listen :Diary_Free :Hands_Empty :Phone_Nearby
:Phone_Free

:Phone# :Mom_Listen

Ask her
friend

Send
message

34 1 5

2

5

1

1

3 2

1

5
3 1

1

2 3

55

1 5

2

1
3 2

1

5

Figure 1. A Hierarchical Task Network for the main character, Ross.

Da:ng*with*Rachel*(Cavazza*et*al.,*
2002)*

rupting the current plan and dealing with a
specific situation. It hence does so more from
the dramatization perspective than from the
planning perspective.

Although the basic elements of actors’
behaviors are deterministic, several factors
contribute to make the action nonpredictable
from the user’s perspective:

• The actors’ initial positions on stage
• The interaction between actors’ plans—

the various characters essentially compet-
ing for resources for action (whether nar-
rative objects or other characters)

• The random output of some terminal
actions

• The characters’ mood status
• User intervention

For instance, the initial positions on stage
strongly influence the emerging situations.
Depending on their positions and activities,
Ross might not be able to acquire informa-
tion from Phoebe before she leaves the apart-
ment to go shopping. Consequently, similar
conditions or user interventions might not
always produce the same results.

User intervention and plot
variation

The user watches the story as a spectator.
He or she can follow the story from any char-
acter’s perspective or navigate the virtual set
while the action is in progress. Then, depend-
ing on the situation, the user can choose
whether to interfere with the characters’

goals. Characters’ actions are dramatized
through the timing of appropriate animations.
Because the actors are playing a role rather
than improvising, their actions are always
narratively meaningful. Hence, if a charac-
ter moves toward a given object, it likely
bears significance on the story and can be a
target for user intervention (for instance, if
the user sees Ross moving toward Rachel’s
diary, he or she can steal or hide the diary).

Users can intervene any time—they don’t
need to wait for key situations or for the sys-
tem to prompt them. However, it is impor-
tant that they understand the story. Thus,
users should be aware from the onset of the
overall dramatic situation—namely, Ross’
interest in Rachel. The system can best con-
vey this using an opening full-motion video
sequence, generated with the game engine.

A user can intervene by either acting on
physical objects onstage that bear narrative
relevance or by advising the characters using
speech recognition. The possibility for phys-
ical intervention is based on the notion of
narrative objects. These objects act as dis-
patchers—that is, they bear narrative signif-
icance because they are the compulsory
objects of key narrative functions. Dispatch-
ers naturally arise from the current course of
action: when Ross seeks a gift for Rachel,
objects such as flowers, chocolates, or jew-
elry become explicit potential targets for user
interaction. These objects, now resources for
actions, can force the character into replan-
ning or action repair, thus creating a new
course for the plot. The user simply uses the

Unreal Tournament’s ordinary “player” fea-
tures to navigate in the virtual set to steal or
hide narrative objects (the user, however, is
not embodied through a character and thus
maintains spectator status).

In Figure 3, a user steals the chocolate box,
so Ross must offer Rachel roses (which hap-
pens to be a favorable gift). This situation can
correspond to various sorts of user interven-
tions, depending on the user’s understanding
of the plot. The user could have realized that
Phoebe lied about Rachel’s preferences and
tried to help Ross. Or, the initial intention
might have been to interfere with Ross’plan,
in which case the user involuntarily helped
him. Dispatchers crystallize choices both
from the characters’perspective and from the
user standpoint, the latter having to decide
whether to interfere. We do not resort to the
traditional notion of affordance nor to its
implementation in current computer games,
where potentially reactive objects are often
signaled as such. Rather, we intend to use the
same kind of narrative cues as traditional
media, such as camera close-ups in films.

The other mode of interaction consists of
influencing actors using speech recognition.
Speech intervention is the most natural way
of influencing the characters and is ideally
suited to the interactive storytelling paradigm
of user-as-spectator. Several interactive sto-
rytelling systems have reported the use of lin-
guistic interaction,1,5 essentially in the form
of user–agent dialogue. The rationale being
that, in these systems, the user is a member
of the cast and acts by engaging in conver-

JULY/AUGUST 2002 computer.org/intelligent 21

Figure 3. User intervention: (a) Ross goes to get a box of chocolates. (b) The user sees this and steals the chocolates. (c) Ross can’t
find them, so he (d) replans and gets roses instead.

(a) (b) (c) (d)

Genera:ng*Game*Worlds*and*
Stories*Together*

Mark*O.*Riedl*
Georgia*Tech*

A*Story*Plan*

requires an initial state: a list of propositions that describe
story-specific details about the story world. The initial state
includes information about NPCs, objects, and places that
are referenced by the plot points. For example, information
about NPCs includes their names, character classes, and
other attributes. The initial state provides the type of each of
the referenced places as a set of propositions. Proposition
types are general and pre-specified. Figure 1 shows a simple
example story with its corresponding initial state.

Our story representation is consistent with AI planning-
based story generation systems such as [6] and [8] that either
generates plots from scratch or adapt novel plots from
existing plots. However, the representation is simple enough
that humans – with the assistance with authoring tools – can
also author their own stories by assembling and
parameterizing known plot point types.

GAME FORGE was implemented to create game worlds
corresponding to stories generated by the game plot
adaptation system described by Li and Riedl [6]. The game
plot adaptation algorithm takes an existing hand-authored
game plot – represented as a partial-order plan [15] – and a
set of preferences about the types of things the player likes
to do in CRPGs and searches for a sequence of changes that
transforms the original game plot into a new game plot that
meets the player’s preference specifications. The game plot
adaptation algorithm is responsible for adding and removing
plot points until success criteria are met. Once the search is
complete, a potentially novel story structure may exist. This
story structures is converted into the GAME FORGE story
representation (the translation from partial-order plan to our
story representation is trivial and straight-forward), and sent
to GAME FORGE to render and execute the game.

Note that the GAME FORGE story representation currently
only handles linear stories. Computer games typically have a
single main storyline that constitutes the set of plot points
that are necessary and sufficient for completion of the game.
GAME FORGE currently only concerns itself with this main
storyline. CRPGs, however, often utilize side-quests, plot
points that are optional and do not causally link back in with
the plot points in the main storyline. GAME FORGE supports

side-quests by generating portions of the game world that
branch off from essential parts of the world based on the
player’s stated preference for adventuring. These branching
spaces could be areas of the world where side-quests unfold.
GAME FORGE, however, does not generate the story content
of the side-quests; the creation of the story content for a
side-quest is the responsibility of an external agent and may
occur before game world generation – providing input into
the required size and shape of the world – or after game
world generation – to utilize optional portions of the world.

IV. GAME WORLD GENERATION
We solve the problem of automatically designing,

building, and rendering a completely functional game world
for a story. Recall that CRPGs interleave plot points and
open-ended game play; the game world to be generated must
ensure a coherent sequence of plot points are encountered in
the world. In the process of generating the world, our
approach also attempts to incorporate preferences for game
play style into the configuration of the world. The problem
can be specified as follows: given a list of plot points of
known types, referencing locations of known types, generate
a game world that allows a linear progression through the
plot points and supports user play style preferences. GAME
FORGE is specifically targeted to CRPGs, but demonstrates
how other heavily story dependent game genres can be
supported.

To map from story to space, GAME FORGE utilizes a
metaphor of islands and bridges. Islands are areas where
critical plot points occur. Each event in the plot is associated
with a location. For example, a story may involve plot points
located in a castle, graveyard, and a cave. The game world
generator parses the generated plot and extracts a sequence
of locations, each of which becomes an island. For example,
the story in Figure 1 plays out in three locations: a castle
(plot points 1, 5 and 6), a graveyard (plot points 2 through
4), and a cave (plot points 7 through 10). Bridges are areas
of the world between islands where non-plot-specific game
play occurs, such as random encounters with enemies and
discovery of treasure. Bridges can branch, meaning there can
be areas that the player does not necessarily need to visit in
the course of the story. The length of bridges and the
branching factor of bridges are dictated by a player model.

In addition to the hard story constraint that there are
specific islands that appear in the world in a specific
sequence, we treat the generation of the game world
environment as an optimization process, balancing two
competing sets of requirements:
1) Game world model: Captures the designer-specified

believable transitions between environment types as the
player moves through the game world. For example, one
would not expect to step directly from a castle into a
mountain lair without first traversing through mountain
terrain.

2) Player model: Captures player-indicated play style
preferences. Play style preference is represented by a

1. Take (paladin, water-bucket, palace)
2. Kill (paladin, baba-yaga, water-bucket, graveyard1)
3. Drop (baba-yaga, ruby-slippers, graveyard1)
4. Take (paladin, shoes, graveyard1)
5. Gain-Trust (paladin, king-alfred, shoes, palace)
6. Tell-About (king-alfred, treasure, treasure-cave, paladin)
7. Take (paladin, treasure, treasure-cave)
8. Trap-Closes (paladin, treasure-cave)
9. Solve-Puzzle (paladin, treasure-cave)
10. Trap-Opens (paladin, treasure-cave)

Hero (paladin), NPC (baba-yaga), NPC (king-alfred), Place (palace),
Place (graveyard1), Place (treasure-cave), Thing (water-bucket),
Thing (treasure), Thing (ruby-slippers), Type (baba-yaga, witch),
Type (king-alfred, king), Type (palace, castle),
Type (graveyard1, graveyard), Type (treasure-cave, cave),
Type (water-bucket, bucket), Type (ruby-slippers, shoes),
Type (treasure, gold), Evil (baba-yaga) …

Fig. 1. A simple story represented as a list of plot points (top) and an initial
state (bottom).

Story*play*and*open1ended*play*

•  Story*play*progresses*the*game*world**via*a*
sequence*of*narra:ve*events*towards*a*
desired*conclusion**

•  OpenDended*play*encompasses*player*
ac:vi:es*that*do*not*progress*(nor*inhibit)*the*
story*plan*
– E.g.,*exploring*the*spa:al*environment,*
encountering*random*enemies,*collec:ng*items*

Integra:ng*play*into*a*story*

•  Challenges**
– A*story*plan*only*contains*the*essen:al*steps*to*
progress*toward*a*goal*situa:on*

–  Plan*steps*are*abstract*events*e.g.,*solve*puzzle*

•  Goal**
–  Input:*a*list*of*events*that*reference*loca2ons*of*
known*types*

– Generate*a*game*world*that*allows*a*linear*
progression*through*the*events*

Mapping*from*story*to*space*

•  Metaphor*of*islands*and*bridges**
–  Islands:*spa:al*areas*where*events*occur**
– Bridges:*spa:al*areas*between*islands*where*
open1ended*game*play*occurs*
•  Note:*Bridges*can*branch.*The*player*does*not*
necessarily*need*to*visit*in*the*course*of*the*story.**

Game*world*genera:on:*3*steps*

(1)*Parse*a*story*plan*for*loca:on*informa:on*
referenced*by*events**
(2)*Generate*an*intermediate*representa:on*
of*the*space*
(3)*Visualize*the*space*graphically*

Step*1:*Create*Islands*

•  Extract*a*sequence*of*loca:ons*from*a*plan*
•  Each*loca:on*becomes*an*island*
•  Requirement*
– The*story*plan*must*be*fully*ordered**
– Each*event*must*be*associated*with*a*loca:on*
– Each*referenced*loca:on*must*have*a*type*
•  Can*be*found*in*the*ini:al*state*

A*Story*Plan*

requires an initial state: a list of propositions that describe
story-specific details about the story world. The initial state
includes information about NPCs, objects, and places that
are referenced by the plot points. For example, information
about NPCs includes their names, character classes, and
other attributes. The initial state provides the type of each of
the referenced places as a set of propositions. Proposition
types are general and pre-specified. Figure 1 shows a simple
example story with its corresponding initial state.

Our story representation is consistent with AI planning-
based story generation systems such as [6] and [8] that either
generates plots from scratch or adapt novel plots from
existing plots. However, the representation is simple enough
that humans – with the assistance with authoring tools – can
also author their own stories by assembling and
parameterizing known plot point types.

GAME FORGE was implemented to create game worlds
corresponding to stories generated by the game plot
adaptation system described by Li and Riedl [6]. The game
plot adaptation algorithm takes an existing hand-authored
game plot – represented as a partial-order plan [15] – and a
set of preferences about the types of things the player likes
to do in CRPGs and searches for a sequence of changes that
transforms the original game plot into a new game plot that
meets the player’s preference specifications. The game plot
adaptation algorithm is responsible for adding and removing
plot points until success criteria are met. Once the search is
complete, a potentially novel story structure may exist. This
story structures is converted into the GAME FORGE story
representation (the translation from partial-order plan to our
story representation is trivial and straight-forward), and sent
to GAME FORGE to render and execute the game.

Note that the GAME FORGE story representation currently
only handles linear stories. Computer games typically have a
single main storyline that constitutes the set of plot points
that are necessary and sufficient for completion of the game.
GAME FORGE currently only concerns itself with this main
storyline. CRPGs, however, often utilize side-quests, plot
points that are optional and do not causally link back in with
the plot points in the main storyline. GAME FORGE supports

side-quests by generating portions of the game world that
branch off from essential parts of the world based on the
player’s stated preference for adventuring. These branching
spaces could be areas of the world where side-quests unfold.
GAME FORGE, however, does not generate the story content
of the side-quests; the creation of the story content for a
side-quest is the responsibility of an external agent and may
occur before game world generation – providing input into
the required size and shape of the world – or after game
world generation – to utilize optional portions of the world.

IV. GAME WORLD GENERATION
We solve the problem of automatically designing,

building, and rendering a completely functional game world
for a story. Recall that CRPGs interleave plot points and
open-ended game play; the game world to be generated must
ensure a coherent sequence of plot points are encountered in
the world. In the process of generating the world, our
approach also attempts to incorporate preferences for game
play style into the configuration of the world. The problem
can be specified as follows: given a list of plot points of
known types, referencing locations of known types, generate
a game world that allows a linear progression through the
plot points and supports user play style preferences. GAME
FORGE is specifically targeted to CRPGs, but demonstrates
how other heavily story dependent game genres can be
supported.

To map from story to space, GAME FORGE utilizes a
metaphor of islands and bridges. Islands are areas where
critical plot points occur. Each event in the plot is associated
with a location. For example, a story may involve plot points
located in a castle, graveyard, and a cave. The game world
generator parses the generated plot and extracts a sequence
of locations, each of which becomes an island. For example,
the story in Figure 1 plays out in three locations: a castle
(plot points 1, 5 and 6), a graveyard (plot points 2 through
4), and a cave (plot points 7 through 10). Bridges are areas
of the world between islands where non-plot-specific game
play occurs, such as random encounters with enemies and
discovery of treasure. Bridges can branch, meaning there can
be areas that the player does not necessarily need to visit in
the course of the story. The length of bridges and the
branching factor of bridges are dictated by a player model.

In addition to the hard story constraint that there are
specific islands that appear in the world in a specific
sequence, we treat the generation of the game world
environment as an optimization process, balancing two
competing sets of requirements:
1) Game world model: Captures the designer-specified

believable transitions between environment types as the
player moves through the game world. For example, one
would not expect to step directly from a castle into a
mountain lair without first traversing through mountain
terrain.

2) Player model: Captures player-indicated play style
preferences. Play style preference is represented by a

1. Take (paladin, water-bucket, palace)
2. Kill (paladin, baba-yaga, water-bucket, graveyard1)
3. Drop (baba-yaga, ruby-slippers, graveyard1)
4. Take (paladin, shoes, graveyard1)
5. Gain-Trust (paladin, king-alfred, shoes, palace)
6. Tell-About (king-alfred, treasure, treasure-cave, paladin)
7. Take (paladin, treasure, treasure-cave)
8. Trap-Closes (paladin, treasure-cave)
9. Solve-Puzzle (paladin, treasure-cave)
10. Trap-Opens (paladin, treasure-cave)

Hero (paladin), NPC (baba-yaga), NPC (king-alfred), Place (palace),
Place (graveyard1), Place (treasure-cave), Thing (water-bucket),
Thing (treasure), Thing (ruby-slippers), Type (baba-yaga, witch),
Type (king-alfred, king), Type (palace, castle),
Type (graveyard1, graveyard), Type (treasure-cave, cave),
Type (water-bucket, bucket), Type (ruby-slippers, shoes),
Type (treasure, gold), Evil (baba-yaga) …

Fig. 1. A simple story represented as a list of plot points (top) and an initial
state (bottom).

Step*2:*Intermediate*representa:on*
•  Game*world*as*a*tree*of*loca:on*types*
–  Indicates*the*size*of*the*game*world,*the*number*
of*unique*loca:ons,*and*which*loca:ons*are*
adjacent*to*each*other*

cave

castle
forest

forest

swamp

swamp

grave-
yard

swamp
forest

forest

mountain

mountain

where*story*plan*events*are*to*occur*

Environment*Transi:on*Graph*

castle forest

grave-
yard

mountain
desert

swamp0.3

0.6

0.2

0.4 0.4

0.2

0.1

0.10.2

0.5

cave

0.2

0.2
0.1

1.0

0.1

0.1 0.5
0.3

0.2

0.2
0.8

0.3

probability*of*transi:oning*from*one*loca:on*
type*to*another*

captures*the*game*designer’s*beliefs*about*good*
environment*type*transi:ons*

Space*Tree*Genera:on**
•  GA*starts*with*ini:al*popula:on*of*random*trees*
•  Op:mized*based*on**
– Degree*to*which*the*number*of*bridges*nodes*in*the*
space*tree*between*islands*have*the*preferred*length**

– Whether*the*bridges*have*the*preferred*branching*
factor*

– Degree*to*which*the*length*of*side*paths—branch*
nodes*that*are*not*directly*between*two*islands—
matches*the*preferred*side*path*length*

– How*closely*environment*type*transi2ons*between*
adjacent*nodes*match*the*environment*transi2on*
graph*probabili2es*

Step*3:*Graphical*Realiza:on*

•  Visualize*a*game*world*described*by*a*space*tree**

cave

castle
forest

forest

swamp

swamp

grave-
yard

swamp
forest

forest

mountain

mountain

Step*3:*Graphical*Realiza:on*
•  21D,*top1down,*:le1*based*
•  Depth1first*traversal*of*the*space*tree,*placing*each*
child*adjacent*to*its*parent*on*a*grid*

•  If*mapping*is*not*feasible,*generate*a*new*space*tree*

cave

castle forest

forestswamp

swamp

grave-
yard

swamp forest

forest

mountain

mountain

Graphical*instan:a:on*of*Loca:on*

•  Loca:on*type*determines*graphical*assets*
– E.g,*town:*buildings,*paving*stones,*towers*

•  Placing*each*asset*by*
– Custom*distribu:on*
– Gaussian*distribu:on*

Graphical*instan:a:on*

•  Loca:on*type*determines*graphical*assets*
– E.g,*forest:*trees,*bushes,*grass**

•  Placing*each*asset*by*
– Custom*distribu:on**
– Gaussian*distribu:on,*or*

Gaussian*
distribu:on*

Grid*to*gameworld*

cave

castle forest

forestswamp

swamp

grave-
yard

swamp forest

forest

mountain

mountain

features in the fitness function conflict. In large, branchy
worlds, we find that as the algorithm adds more nodes to
expand the world, the space tree's environment transition
variance penalty is likely to increase, making it difficult to
minimize penalties for both. For small worlds, the algorithm
stagnates when trying to create additional side paths along

short bridges. Optimizing the environment transition
variance for small worlds also seems to be a difficult task
given the imposition of immutable environments (e.g., the
islands). Future work is needed to determine the impact of
high penalty values on human players perception of the
world and enjoyment with different play style preferences.

V. STORY EXECUTION
After construction of the game world, the game must be

playable without further modification by the user. There are
two issues that must be addressed: (a) the world must be
populated with NPCs, and (b) the NPCs must act out the
story, which was not known prior to execution.

Population of the world with NPCs and items begins by
parsing the input story structure. Character type information
is used to select the appropriate avatar for each character. In
our current system, avatars are simple animated sprites. We
use a basic, easily extensible meta-data map from symbolic
descriptors to art assets. The same process is used to handle
items (e.g., the bucket, shoes, and treasure). The location at
which each NPC and item appears is determined by parsing
the story structure, looking for the location of the event in
which the NPC or item is first referenced (always an island).
Thus, the coordinate position at which to instantiate the NPC
or item is determined by locating the island in the space tree
and determining the center coordinates in Cartesian space
with which the island node correlates. See Figure 8 for a

Fig. 10. Fitness of best individual per generation for three different
configurations of the player model: a larger world with a lot of branching, a
smaller world with little branching, and a moderate sized world with
moderate branching. Horizontal lines show the 7.5% and 5% penalty
thresholds for each problem configuration.

Fig. 7. A game world generated for the story from Figure 1, involving plot
points that take place in a castle, graveyard, and cave. Plot points are listed.

Fig. 8. A shot of the game being played. The player is about to encounter the
king in the castle island.

Fig. 9. Example worlds generated for the same plot. The top row was generated with parameters set for a larger world with greater branching. The bottom
row was generated with parameters set for a smaller world and little branching.

Different*worlds*for*the*same*plot*

features in the fitness function conflict. In large, branchy
worlds, we find that as the algorithm adds more nodes to
expand the world, the space tree's environment transition
variance penalty is likely to increase, making it difficult to
minimize penalties for both. For small worlds, the algorithm
stagnates when trying to create additional side paths along

short bridges. Optimizing the environment transition
variance for small worlds also seems to be a difficult task
given the imposition of immutable environments (e.g., the
islands). Future work is needed to determine the impact of
high penalty values on human players perception of the
world and enjoyment with different play style preferences.

V. STORY EXECUTION
After construction of the game world, the game must be

playable without further modification by the user. There are
two issues that must be addressed: (a) the world must be
populated with NPCs, and (b) the NPCs must act out the
story, which was not known prior to execution.

Population of the world with NPCs and items begins by
parsing the input story structure. Character type information
is used to select the appropriate avatar for each character. In
our current system, avatars are simple animated sprites. We
use a basic, easily extensible meta-data map from symbolic
descriptors to art assets. The same process is used to handle
items (e.g., the bucket, shoes, and treasure). The location at
which each NPC and item appears is determined by parsing
the story structure, looking for the location of the event in
which the NPC or item is first referenced (always an island).
Thus, the coordinate position at which to instantiate the NPC
or item is determined by locating the island in the space tree
and determining the center coordinates in Cartesian space
with which the island node correlates. See Figure 8 for a

Fig. 10. Fitness of best individual per generation for three different
configurations of the player model: a larger world with a lot of branching, a
smaller world with little branching, and a moderate sized world with
moderate branching. Horizontal lines show the 7.5% and 5% penalty
thresholds for each problem configuration.

Fig. 7. A game world generated for the story from Figure 1, involving plot
points that take place in a castle, graveyard, and cave. Plot points are listed.

Fig. 8. A shot of the game being played. The player is about to encounter the
king in the castle island.

Fig. 9. Example worlds generated for the same plot. The top row was generated with parameters set for a larger world with greater branching. The bottom
row was generated with parameters set for a smaller world and little branching.

Greater*Branching*parameter*

Lible*Branching*parameter*

More*Issues*

•  *(a)*the*world*must*be*populated*with*NPCs*
– Parse*the*story*plan*and*instan:ate*sprites*(based*
on*NPC*types)*in*the*loca:on*of*the*event*they*
first*par:cipate*in*

•  (b)*the*NPCs*must*act*out*the*story*
– Reac:ve*script,*similar*to*HTN*(AND1OR*tree*
structure)*
•  Narra:ve*direc:ve*behaviors*
•  Local*autonomous*behaviors*

Video*

•  hbp://www.youtube.com/watch?
v=8xeJn7JCrgE*

Lab*Session*–*Red*Riding*Hood*
(defdomain*red2*
**(*
****(:method*(visit*?who*?whom)*
********by1walk**
********((at*?who*?x)*(at*?whom*?y)*(walkable*?x*?y))*
********((!walk1to*?who*?x*?y)))*
*
*****(:method*(eat*?who*?what)*
********((hungry*?who)*(predator*?who)*(alive*?who)*(alive*?what)*(not*(equal*?who*?what)))*
********((!eat1alive*?who*?what)))*
*
****(:operator*(!walk1to*?p*?here*?there)*
*********((at*?p*?here))*
*********((at*?p*?here))*
*********((at*?p*?there)))*
*
****(:operator*(!eat1alive*?who*?whom)*
********((at*?who*?loc1)*(at*?whom*?loc1)*(alive*?whom)*(hungry*?who))*
********((alive*?whom)*(hungry*?who))*
********((full*?who)))))*

Problem*defini:on*
(defproblem*problem*red2*
****((at*Red*RedHouse)**
*****(at*Granny*GrannyHouse)*
*****(at*Wolf*GrannyHouse)*
*****(alive*Red)*(alive*Wolf)*
*****(predator*Wolf)*(hungry*Wolf)*
*****(walkable*RedHouse*GrannyHouse))*
*
***(*(visit*Red*Granny)*(eat*Wolf*Red)))*
*

Run*the*program*
•  cd*examples/red2;*rm*red2.java;*rm*red2.txt;*rm*
problem.java;*rm**.class*

•  administrators1MacBook1Air14:jshop2*byuc$*
xcrun*make*12*

•  cd*examples/red2;*java*JSHOP2.InternalDomain*
red2*

•  cd*examples/red2;*java*JSHOP2.InternalDomain*1
ra*problem*

•  cd*examples/red2;*javac*problem.java*
•  cd*examples/red2;*java*problem*

Thanks!*

