Lecture 5:
Landscapes, Noise,
Fractals, Agents

Procedural Content Generation,Autumn 2013

Noor Shaker, Julian Togelius and Mark Nelson




Thursday, Sepember 19,13



Thursday, September 19, 13



Maps and Landscapes:
where and why!

® |n a strategy game, to move units on
® |n a flight simulator, to fly over
® |n most first person games, to move in

® |n any game, as a backdrop

Thursday, September 19, 13



Features of landscapes

® Heightmap
® Passable/impassable areas

® Points of interest (e.g. items, base locations,
spawn points)

® .. .other features possible

Thursday, September 19, 13



Example: flight sim

Thursday, September 19, 13



Example: StarCraft

Thursday, September 19, 13



Example: Halo Reach

Thursday, September 19, 13



Heightmap
representation

® Essentially a 2D grid with height values in
cells




Cloudy skies, plasma...




Fractal methods

® Based on self-similarity

® Did you know that all coastlines are of
infinite length?

Thursday, September 19, 13



Midpoint displacement

® 2D algorithm - creates “silhouettes™
through offsetting a line

® At each iteration, find the midpoint
between two points on a line, and raise or
lower this point a random amount

® parameter H:factor by which random
number range is multiplied each iteration

® This results in two new lines; do the same
for these lines (using range * H), etc.

Thursday, September 19, 13



Midpoint displacement

A
T T
T T
e




Midpoint displacement




Diamond-Square

® Extension of midpoint displacement into
three dimensions

e Offsets the midpoints of squares rather
than lines

® [wo steps for each iteration:
® Diamond step: squares horizontal

® Square step: squares turned 45 degrees

Thursday, September 19, 13



Diamond-Square

Thursday, September 19, 13



Thursday, September 19, 13



Recursive
implementation

diamondsquare (square) {
midpoint = diamond (square);
for all 4 edges {
edge midpoint = square (edge);
}

randrange *= H;

for all 4 resulting squares {
diamondsquare (new square);

}

J

Thursday, September 19, 13



Wraparound?

—r




Perlin Noise

® A function for generating noise in n
dimensions

® Scale-free

® Very widely used in all computer graphics,
including in games and movies

® Combinations of Noise() with itself and
with other operators can give interesting
results - see paper

® Ken Perlin received an Oscar for it!

Thursday, September 19, 13



Perlin Noise: basic idea

® Assign random gradient vectors to cells in a
matrix (using standard random number
generators)

® [hese gradients determine the height

® For values “between the cells” (non-integer
coordinates): interpolate

® Repeat at higher resolutions (“octaves™)
and lower amplitudes

® Just like diamond-square

Thursday, September 19, 13



Perlin Noise in 2D

® Create a 2D grid with a randomly chosen
2D vector associated with each cell

® e.g,[0,0] is associated with the vector
[0.4,0.3] and [0, 1] is associated with
[0.1,0.7] etc.

® Smoothly interpolate (using e.g. cubic
interpolation) a surface that corresponds
to the vectors

Thursday, September 19, 13



5‘5 6,. )
P
5.69?4.31
3,4 6,4
. .

Thursday, September 19, 13




A taxonomy of PCG

® Online/Offline

® Necessary/Optional
® Random seeds/Parameter vectors
® Stochastic/Deterministic

® (Constructive/Generate-and-test

Thursday, September 19, 13



In general,

PCG > randomness




Agent-based methods

® Use a number of “artificial agents” that
construct the landscape by acting on it

® Agents of different types do different jobs

® Could be more controllable than diamond-
square

® Could give rise to different types of
landscapes

Thursday, September 19, 13



Controlled Procedural
Terrain Generation
Using Software Agents

Jonathon Doran and lan Parberry

Published in IEEE TCIAIG, 2010




D&P’s five agent types

® Coastline agents
® Smoothing agents
® Beach agents

® Mountain agents

® River agents

Thursday, September 19, 13



Rules for agents

® Fach agent has a set number of “tokens” to
spend on actions

® Fach agent is allowed to see the current
elevation around it, and allowed to modify

It

® Agents don'’t interact directly

Thursday, September 19, 13



In the beginning...

...there was a vast ocean.

Then came the first coastline agent.

Thursday, September 19, 13



Coastline agents

® Multiply until they cover the whole coast

® Move out to position themselves right at
the border of land and sea

® Generate a repulsor and an attractor point

® Score all neighbouring points according to
distance to repulsor and attractor points

® Move to the best-scoring points, adding
land as they go along

Thursday, September 19, 13



COASTLINE-GENERATE(agent)

© 00 J O O i W N

N e T T e T e S S G S Gt
J O Ot = W N — O

then

if tokens(agent) > limait

create 2 child agents
for each child

do

child

A

child

A

child

A

«— a random seed point on parent’s border
«— 1/2 of the parent’s tokens
«— a random direction

COASTLINE-GENERATE(child)

else

for each token

do

point <+ random border point

for each point p adjacent to point

do

score p

fill in the point with the highest score

Thursday, September 19, 13



Coastline agents

Varying action sizes

Thursday, September 19, 13



Smoothing agents

® Jake random walks on

the map

® Change the elevation of

each visited point to

(almost) the mean of its

extended von Neumann

neighbourhood

Thursday, September 19, 13



Smoothing agents

SMOOTH( starting-point)

1 location < starting-point

2 for each token

3 do

4 heightiocation < weighted average of neighborhood
5 location < random neighboring point

Thursday, September 19, 13



Beach agents

® Select random position along the coast,
where coast is not too steep

® Flatten an area around this point (leaving
small variations)

® Move randomly a short direction away
from the coast, flattening the area

Thursday, September 19, 13



Beach agents

BEACH-GENERATE( starting-point)

1 location <« starting-point
2 for each token

3 do
4 if heightocation = limit
5 then
6 location < random shoreline point
7 flatten area around location
8 smooth area around location
9 inland <+ random point a short distance inland from location
10 for i < 0 to size(walk)
11 do
12 flatten area around nland
13 smooth area around inland
14 inland < random neighboring point

15 location <+ random neighboring point of location

Thursday, September 19, 13



Beach agents

Varying beach width

Thursday, September 19, 13



Mountain agents

® Start at random positions and directions

® Move forward, continuously elevating a
wedge, creating a ridge

® Turn randomly within 45 degrees from the
initial course

® Periodically offshoot “foothills”
perpendicular to movement direction

Thursday, September 19, 13



Mountain agents

MOUNTAIN-GENERATE(startingyoint)

1 location < starting-point
2 direction < random direction
3 for each token
do
elevate wedge perpendicular to direction
smooth area around location
location < next point in direction
every n-th token
do

10 direction < original-direction 4 45-degrees

© 00 J O Ot =~

Thursday, September 19, 13



Mountain agents

Ped 30 = E)E W Hed 30

Narrow versus wide features

Thursday, September 19, 13



River agents

Move from a random point on the coast
towards a random point on a mountain
ridge

“Wiggle” along the path
Stop when reaching too high altitudes

Retrace the path down to the ocean,
deepening a wedge along the path

Thursday, September 19, 13



River agents

RIVER-GENERATE()

coast < random point on coastline
mountain < random point at base of a mountain
point «— coast
while point not at mountain
do
add point to path
point < next point closer to mountain
while point not at coast
do
flatten wedge perpendicular to downhill direction
smooth area around point
point < next point in path

© 00 ~J O O i W N

—_
N — O

Thursday, September 19, 13



River agents

A dry river, and the outflow of three rivers

Thursday, September 19, 13



Further questions

® Parameters... what parameters?

® What features of landscapes do we want to
be able to specify?

® How can the human and the algorithm
interact productively?

Thursday, September 19, 13



Search-based methods

® Use an evolutionary algorithm, or other
stochastic optimization algorithm

® Evaluate candidate pieces of content using a
fitness function

Thursday, September 19, 13



Issues in
search-based PCG

® Content representation and search space
® Direct or indirect!?
® Fitness function

® Direct, simulation-based, interactive!?

Thursday, September 19, 13



Multiobjective Exploration
of the StarCraft Map Space

Julian Togelius, Mike Preuss,
Nicola Beume, Simon Wessing,
Johan Hagelback and Georgios N.Yannakakis




Our approach:

® Direct/indirect map representations
® An ensemble of fithess functions

® Multiobjective evolution

Thursday, September 19, 13



StarCraft

® C(Classic real-time
strategy game

e Korea’s unofficial
national sport

® Jwo or three player
competitive matches

® T[hree distinct races

Thursday, September 19, 13



StarCraft map features

Thursday, September 19, 13



Traditional (constructive)
map generation

® Place features on maps according to some
heuristic

® c.g.fractals, growing islands, cellular
automata

® Hard or impossible to optimize for
gameplay properties

® Restrictions on possible content necessary
in order to ensure valid maps

Thursday, September 19, 13



Our approach

® Define desirable traits of RTS maps

® Operationalize these traits as fithess
functions

® Define a search space for maps

® Search for maps that satisfy the fitness
functions as well as possible, using
multiobjective evolution

® (visualize trade-offs as Pareto fronts)

Thursday, September 19, 13



Desirable traits
of an RTS map

Playability
Fairness
Skill differentiation

Interestingness




Playability
fithess functions

® Base space: minimum amount of space
around bases

® Base distance: minimum distance between
bases (via A*)

Thursday, September 19, 13



Fairness

fitness functions

® Distance from base to closest resource

® Resource ownership

® Resource safety

® Resource fairness

(b) safe resources

Thursday, September 19, 13




Skill differentiation
fitness functions

(also contribute to interestingness)

® Choke points
(narrowest width of shortest path)

® Path overlapping




Dual map
representation

® |ndirect representation: a vector of real
numbers in {0..1}

® Direct representation: a 64x64 grid
corresponding to a StarCraft map, including
impassable areas, bases, resource sites

® (Genotype to phenotype mapping:
before fithess calculation

Thursday, September 19, 13



Genotype to
phenotype

® [wo or three bases, five mineral sources
and five gas wells: (phi, theta) coordinates

® Rock formations represented indirectly
using “turtle graphics”. Each formation has:

® (x,y) starting position
® probability of turning left/right

® probability of gaps (“lifting the pen™)

Thursday, September 19, 13



Experiments

® Used the SMS-EMOA

® fast hypercube-based descendant of
NSGA-II

® Tried optimizing each pair of objectives
® All at once not computationally feasible!

® Population 20, 50000 evaluations

Thursday, September 19, 13



Last piece of the puzzle

® From phenotype to StarCraft maps via
SCPM

® Further manual editing possible but not
hecessary

® (shown maps slightly aesthetically
enhanced)

Thursday, September 19, 13



Evolved map

Resource fairness vs. choke points

Thursday, September 19, 13



Another evolved map

Resource fairness vs. choke points

Thursday, September 19, 13



Three-player map




Another three-player map




Observations on the
fitness functions

® Some objectives are trivial to optimise, e.g.
base space was made into a constraint

® Some are easy and do not conflict with
other objectives, e.g. resource ownership

® Some are easy but partially conflict with
others, e.g. base distance

® Some are not so easy and highly
conflicting, e.g. choke points

Thursday, September 19, 13



r4

-0.90 -0.80 -0.70

-1.00

-0.965

-0.975
I

o
r4
|

-0.985

®
o
4
-0.995
I

-0.70 -0.65 -0.60 -0.55 -0.50 -08 -06 -04 -0.2

b1 p1

Single pareto fronts

| eft: resource fairness vs. base distance
Right: resource fairness vs. choke points

Thursday, September 19, 13



S
S =
N~
o \V/
1 O
>
D @ c (¥
T Q@ (@ @ NI +
@) (p]
- O X o A
o !
' B R P A
S | o™ 4
A g % o o x
XL e
8 | @99 O */x/%%ﬁ*?év % 8
" | | | | | < | | | |
-0.70 -0.65 -0.60 -0.55 -0.50 -0.8 -0.6 -04 -0.2

b1 p1

Composite pareto fronts

| eft: resource fairness vs. base distance
Right: resource fairness vs. choke points

Thursday, September 19, 13



What did we find!

® Our map representation works:
We can reliably evolve good-looking,
playable maps

® Some of our fitness functions are good
® Some are not

® VWhat to do with the Pareto fronts?

Thursday, September 19, 13



What to do with the
Pareto fronts!?

® Human designers might use Pareto fronts
to understand the tradeoffs between
different desirable properties

® Use evolved maps as starting points for
further human design

® Or algorithmically select maps in automatic
content generation

Thursday, September 19, 13



A taxonomy of PCG

® Online/Offline

® Necessary/Optional
® Random seeds/Parameter vectors
® Stochastic/Deterministic

® (Constructive/Generate-and-test

Thursday, September 19, 13



