Declarative approaches

Procedural Content Generation,Autumn 2012

Julian Togelius

(Thanks to Adam Smith!)

Declarative procedural
content generation!?

® Designers state their intent (what they
want) instead of method (how to get it)

® Algorithms are used “under the hood” to
deliver whatever was asked for

® T[he user might be agnostic about the
algorithms

® Non-specified aspects may vary

This lecture

® [wo very different papers...

® Tutenel et al. use declarative world
modelling to integrate PCG algorithms
and allow multi-level editing

® Smith and Mateas state properties and
constraints for game content
declaratively, and create content through
solving

A declarative approach
to procedural modeling
of virtual worlds

R. M. Smelik, T. Tutenel, K. J. de Kraker and R. Bidarra

Computers & Graphics 35 (201 1) 352-363

Sketchaworld framework

Goals:

® |ncrease designers’ productivity while
retaining creative control

® Provide intuitive way of working with PCG
algorithms for non-experts

® Provide framework in which to integrate
new PCG research

Declarative modelling

® Procedural sketching:“paint” with PCG
tools

® Consistency maintenance through a GIS-
inspired system of layers

® Edits can be done at any time in any
layer, without messing up the other
layers more than necessary

landscape and
relevant features

painted
ecotopes

procedural
generation

anierr P —

Road layer

generated
terrain
feature

Vegetation layer

landscape and

affected features

sketched (* . @) Lo Water layer

feature

Landscape layer

update update

feature mode

procedural sketching virtual world consistency maintenance 3D virtual world

Fig. 1. An overview of the workflow of the declarative modeling approach: using procedural sketching (Section 2), designers interactively create the virtual world, of which
each feature is automatically generated, integrated and maintained within the virtual world model (Section 3). From this semantic model of the virtual world, other
representations are derived, such as a 3D geometric model.

Layers

Urban layer
Road layer
Vegetation layer
Water layer

Landscape layer

Consistency
malintenance

® A change in one of the levels will typically
affect other levels (e.g. unleashing a river
through a city)

® A feature can make a claim for an area

® The claim can be granted or rejected,
depending on the priority of the
feature

® A feature can request a landscape

Feature interaction

® [wo features claim the same area...

® |f possible, this solved with a connection
(e.g. bridge, tunnel, road junction)

® Otherwise, the lower-priority feature
loses and will have to remodel the part

|| solve all interactions between a feature and existing features
|| fx-feature which has made a new claim
|| ax-area of terrain claimed by f,
|| I-level of abstraction
SolveFeaturelnteractions(feature f,, area a,, level I):
/| find all interacting features with granted claims
F = {f,|fy € features,ax N f,. area # 0}
sort F according to highest priority aim(fy,)
[handle all feature interactions
for all feature f, in F do
if prioritycgim(fx, [) > prioritycqim(fy,) then
Solvelnteraction(f,, fx, ax N fy. area,)
else
Solvelnteraction(fy, fy, ax N f,. area, [)
end if
end for
|| solve an interaction between a pair of terrain features
|| fiose-feature for which the claim is rejected
|| fwin-feature for which the claim is granted
|| a-disputed area
/| | - level of abstraction
Solvelnteraction(feature fj,., feature f,,, area a, level I):
|| determine whether connection can and should be formed
if connectionDefined(fyse.type, fwin-type)
priorithonnect(flose, fwinv a, l) > prioritYConﬂict(flosev a, l) then
|| interaction is solved with a connection
fiose.connectTo(fin, a,)
else
|| interaction is solved by restructuring the losing feature

fiose-T€StrUCtUre(a, 1)
end if

Landscape layer

® Grid of painted ecotopes is turned into
elevation and roughness

® Basically, randomization and interpolation
is added to the coarse painted grid

Water layer (rivers)

® Rivers flow from higher to lower
elevation

® A sequence of control points are
created...

® for each new point,a number of points
in a circle around it are scored

according to equations (next slide)

® The best point is chosen as next

Vegetation layer

® Type of vegetation at each spot depends
on:

® clevation profile, soil type (different
species have different preferences)

® simulation of competition for resources
(space, water)

Road layer

® Similar to the river creation: a sequence
of control points is created, and a spline
along these points define the road

® Prefers no change in elevation (unlike the
rivers!)

Urban layer

® Recursive subdivision approach (clusters,
districts, blocks, buildings)

® | and use model determines repulsion and
attraction between different city features

® Different land use models for different
types of cities (mercantile, feudal...)

A taxonomy of PCG

® Online/Offline

® Necessary/Optional
® Random seeds/Parameter vectors
® Stochastic/Deterministic

® (Constructive/Generate-and-test

Answer Set
Programming for
Procedural Content
Generation: A Design
Space Approach

Adam M. Smith and Michael Mateas

IEEE TCIAIG, 201 |

Answer set
programming

Declarative programming for search
problems

Based on logic programming (syntax very
similar to Prolog)

Finding an answer set is equivalent to
solving a satisfiability problem

AnsProlog

teleportation disabled.

initial _health(100).

weather model(springtime).
allies(humans,elves).
damage(sword_of might,11).

scripted event(spawn(boss,temple),120).

AnsProlog

valid move(rock),
valid move(paper),
valid move(scissors),
valid move(lizard),
valid move(spock).

AnsProlog

plateau at(X) :-

height(X-1, H), height(X, H), height(X+1, H).
hostile(A,B) :- enemy(A,B).
hostile(A,C) :- enemy(A,B), friend(B,().
hostile(A,C) :- friend(A,B), enemy(B,C).

Answer set programming:
choice rules

{ rain, sprinkler }.
wet :- rain.
wet :- sprinkler.

dry :- not wet.

Answer set programming:
answer set

dry.
wet, rain.
wet, sprinkler.

wet, rain, sprinkler.

Answer set programming:
Integrity constraints

® Cannot be true (“implies contradiction™)

.- sprinkler, rain.

ASP solvers

® (Generates answer sets from ASP
programs

® Can be treated as black-box

® Usually do not generate complete
candidates, but proceed by excluding
whole regions of search space that
violate constraints

ASP for PCG

® Crucial properties of game content are
represented in ASP form

® Designers ask questions that embody
their design intent (“which levels have |5
rooms, no green mushrooms and can be

cleared without wall-jumping?”)

® An ASP solver delivers an answer set,
where each answer is interpreted as a
game content artifact

ASP for PCG

Design Space

Generate

Model

v

N

Inspire

Logic Program

Solve

Artifacts
A
Interpret
» Answer Sets

ASP for PCG

Crucial steps:
® Modelling the content domain as ASP

® Creating 2 mechanism that interprets
collections of ASP statements as content

® Designing designer-relevant ASP questions

An example:
Chromatic mazes

® Colour wheel: red-yellow-green-cyan-
blue-magenta

® No explicit walls

® Movement is permitted between cells of
the same or adjacent colour

Chromatic maze

Chromatic maze

There are six colours.
The maze has dimensions six by six.

There is exactly one cell at each {x, y}
position, and it has one of the six colours.

There is exactly one start position and
one finish position.

Chromatic maze

generator
cell(Color, X,Y), start(X,Y), finish(X,Y).
color(red; yellow; green; cyan; blue; magenta).
dim(1..6).
| { cell(C,X,Y) :color(C) } :- dim(X),dim(Y).
| { start(XX,Y) :dim(X) :dim(Y) } I.
| { finish(X,Y) :dim(X) :dim(Y) } I.

Chromatic maze
generator

® Actually a complete generator!

® Except that it might generate unsolvable
mazes...

Solution

- not victory.

Solution: solvability
constraint

player at(0,X,Y) :- start(X,Y).

player at(T,X,Y) :-
player at(7-1,5X,SY),
passable(SX,SY,X,Y),
0 {player at(0..7-1,X,Y)} O.

victory at(T) :- player at(T,X,Y), finish(X,Y).

victory :- victory at(7).

Asking for mazes with
long shortest paths

- victory_at(T), T<22.

Diorama

Diorama

® Map generator for open-sourced RTS
Warzone 2100

® Maps: heightmaps + cliffs + features

® Predicates available for e.g. raised bases,
defendable oil wells, smooth plains etc.

Runtime of ASP solvers

® |n general, the problem of finding an
answer set is NP-complete

® Yes, that means exponential time
® But in practice, it seems to work very fast

® So far..

Other ASP issues

Combining with optimisation - how can
we get “‘good enough” content (anytime)
even if optimal content is not available?

Diversity of generated content
Multiple objectives

How can we create adaptive games
(based on player modelling) using

A taxonomy of PCG

® Online/Offline

® Necessary/Optional
® Random seeds/Parameter vectors
® Stochastic/Deterministic

® (Constructive/Generate-and-test

Today's lab:
Answer set
programming

