Searching for Stories

Yun-Gyung Cheong, Byung-Chull Bae

Procedural Content Generation in
Games, 2013

Outline

Stories, Games, and Quests

Story generation systems

Planning algorithms

Plan representation

Generating game world automatically
Lab: HTN plan

Story and Game

e Stories endow gameplay meanings by providing
context and goals

— Set the mood and general theme
— Motivate the player to take actions
— Progress the game (sometimes)

* Stories in games

— Bioshock Infinite, The last of us, Heavy Rain, L.A.
Noire, Wake Alan, To the Moon, The Secret of
Monkey Island, The Walking Dead, etc.

— Serious Games

Story and Quests

* |Integrate a storyline with gameplay
— By giving a player something to do

— E.g., Retrieve an item, help an NPC, defeat a
villain, transfer goods

* Two way interaction
— Quests are motivated by the storyline

— Quests advance the story when completed

Why Generate Stories?

* Replayability
* Personalization
Story space explodes

Authoring Bottleneck!!

Endings of Heavy Rain

* +20 endings: 6 different endings for 4 characters

Endings of Heavy Rain

 Ethan’s endings
— Ethan is in prison and hangs himself

— Ethan kills himself at his apartment when Shaun is not
saved

— Ethan is released from jail and sees Shaun
— Ethan saves Shaun and lives in an apartment with him
— Ethan saves Shaun and lives with him and Madison

— Ethan can also be killed by the Police after saving
Shaun but letting Scott live.

http://www.gamefaqgs.com/ps3/933123-heavy-rain/answers?qid=167784

Story as a Plan

e Story: a sequence of actions that transform the
world state to a desired state

* Plan: a sequence of actions to achieve a goal
state from an initial state
— Action is an instantiation of an operator
— E.g, Fly (?x, ?from, ?to)
« PRECONDITIONS: At(?x, ?from)
« EFFECTS: At(?x, ?to)

— E.g., Fly (Justin, CPH, Paris)

Planning-based Story Generation

Systems

Tale-Spin (Meehan, 1976)

— Simulation of a character who tries to solve a problem

— Inference, goal-based planning, memory, relationship between
characters, character’s personality

Universe (Lebowitz, 1985)

— Planning (plot fragment containing sub-goals)
Mimesis (Young, 2000)

— Partial-order planning

Interactive Storytelling (Cavazza et al., 2002)
— HTN (Hierarchical Task Network)

Facade (Mateas and Stern, 2003)

— Beat as a dramatic action that encodes goals, preconditions and
effects

Planner Generated Story Examples

TALE-SPIN

One day Joe Bear was hungry. He asked his friend Irving Bird where some
honey was. Irving told him there was a beehive in the oak tree. Joe walked to
the oak tree. He ate the beehive.

Mis-Spun stories

One day Joe Bear was hungry. He asked his friend Irving Bird where some
honey was. Irving told him there was a beehive in the oak tree. Joe
threatened to hit Irving if he didn’t tell him where some honey was.

Planner Generated Story Examples

TALE-SPIN

One day Joe Bear was hungry. He asked his friend Irving Bird where some
honey was. Irving told him there was a beehive in the oak tree. Joe walked to

the oak tree. He ate the beehive.

Partial-order Planner

Dr. Evil went to a bank. Dr. Evil withdrew cash from his account to buy a gun. Dr.
Evil traveled to a gun store. Dr. Evil bought a gun. Dr. Evil traveled to the White

House. Dr. Evil shot the president with his gun.

Planning as a search process

Input: planning problem (consisting
of domain description and problem
description) l

* Planning algorithm
* Heuristics

!

Output: A plan or a set of plans
(where a plan = a sequence of
actions that will achieve the goal
state)

Planner

Forward state-space search algorithm

1. construct the root node as the initial state

2. select a non-failure node
— |f such nodes are not found, return ‘no solution’ and exit

— if the goal state is true, return the path from the initial state
up to the current node as a solution and exit

3. select an operator whose preconditions are true

— if no operators are applicable, mark the node as ‘Failure’ and
go to step 2

4. construct children nodes by applying the operator

— ifthe number nodes in the graph exceeds a predefined
maximum search nodes, return ‘over search limit’ and exit

5. gotostep?2

State-space search example

GOAL: At(P1, B), At(P2, B) p1 B)
Forward [(P, A) j/ W AD
state-space h
Al(P,, A) —
Fly(P,, A, B) ,AKF%

search

State-space search example

GOAL: At(P1, B), At(P2, B) ,c>1 B)
Forward [t(Py, A) j/ e AY

state-space AP, A
27 T ——

search Fly(P,, A, B) At(Py, A

AlP,, B
At(P‘l! A)
g —
Al(P,, B Fly(Py, A, B
Backward P B) A Atl(P;, B)
Al(P», B)

state-space

search Al(P;, B) VP2 A B
At(P21 A)

3.

4.

5.

Plan-space Search

construct the root node as the planning problem
select a non-failure node (based on its heuristic value)

select a flaw in the node
— if no flaws are found, return the node as a solution and exit

construct children nodes by repairing the flaw
— if the flaw is an open precondition

. a) establishes a causal link from an existing plan step, or
. b) adds a new plan step whose effects establish the precondition
— if the flaw is a threat
. a) add a temporal ordering constraint so that the threatened causal link is not
intervened, or
. b) add a binding constraint to separate the threatening step from the steps

involved in the threatened causal link.
— if the flaw is not repairable, mark the node as ‘Failure’

— ifthe number nodes in the graph exceeds a predefined maximum
search nodes, return ‘over the search limit’ and exit

go to step 2

[]p

#1

An empty plan with the initial step
and the goal step only

p is true in the initial state and

the goal literal is g

An empty plan with the initial step
and the goal step only

p is true in the initial state and

the goal literal is g

Repair an open precondition g flaw

Repair an open precondition g flaw with the addition of Step $2

With the addition of Step S1

An empty plan with the initial step
and the goal step only

p is true in the initial state and

the goal literal is g

Repair an open precondition g flaw

Repair an open precondition g flaw With the addition of Step $2

With the addition of Step S1

Repair an precondition p flaw with gstablishing Rgpoir an prgcondi’rion r flaw
the causal link from the initial step to S1 with the addition of Step 3
\ 4

P

Solution

An empty plan with the initial step
and the goal step only

p is true in the initial state and

the goal literal is g

1ir an open precondition g flaw

Repair an open precondition g
the addition of Step S1

With the addition of Step S2

ion p flaw with establishing
the initial step to S1

with the addition of Step 3

Solution

Repair an precondition p flaw with establishing
the causal link from the initial step to S3

#7

flaw

Repair an precondition r flaw

Pick an precondition flaw ¢ to fix
but failed to find an operator that
has c as its effect.

S3 —r| S2

Terminal node

Total-order vs. Partial-order plan

* A total-order plan

— specifies the temporal ordering constraint of every step in the
plan

* A partial-order plan

— specifies only those temporal orderings that must be
established to resolve threats.

 Example goal: purchasing milk and bread in a grocery store

— A total-order plan: a) to purchase milk first and to purchase
bread, and b) to purchase bread first and to purchase milk.

— A partial-order plan does not specify the ordering constraint
and defers the decision until when it is necessary.

Heuristic Function

* Estimates the length or the cost of the
solution

— E.g., the length of the current partial plan +
number of flaws

— E.g., the length of the current plan + number of
states that are different from the goal state

POP is computationally expensive

Domain Model

* Alibrary of plan operator templates that
encode knowledge in a particular domain

 Example

— Alex, is on the rooftop of a building (initial state).
His goal is to be on the ground level (goal state) of
the building without being injured (goal state).

— Available options are
 take a lift (Plan 1)
e walk down the stairs (Plan 2)
e jump from the roof (Plan 3)

STRIPS

e Stanford Research Institute Problem Solver (Fikes
and Nilsson, 1971)

e A state representation
— Propositional literals or first-order logic literals

* Closed-world assumption

— conditions that are not explicitly specified are
considered as false

e only positive literals are used for the description of initial
states, goal states, and preconditions

* Effects may include negative literals

STRIPS representation example

Problem: Alex on the top of a building wants to be on
the ground level

Initial state representation

— At(Alex, Rooftop) A Alive(Alex) A Walkable (Rooftop,
Ground) A Person(Alex) A Place(Rooftop) /A Place(Ground)

Goal State representation

— At(Alex, Ground) A Alive(Alex)

Action representation

— Action (WalkStairs (p, from, to))

 PRECONDITION: At (p, from) A Walkable (from, to) A Person(p) A
Place (from) A Place (to)

* EFFECT: -At(p, from) A At (p, to)

ADL (Action Description Language)

More expressive than STRIPS

Open-world assumption

— Both positive and negative literals are allowed
Quantified variables: All, existential

Combination of conjunction and disjunction are
allowed in the goal state description.

Conditional effects are allowed.

Equality and non-equality predicates and type in
variable

— e.g., (from #to)

— e.g, (p: Person), (from: Location))

ADL representation example

* I|nitial state representation

— At(Alex, Rooftop) A =Dead(Alex) A Walkable (Rooftop, Ground) A
Person(Alex) A Place(Rooftop) A Place(Ground) A Wearing(Alex,
Parachute) A =Injured(Alex) A Thing(Parachute)

 Goal State representation
— At(Alex, Ground) A =Dead(Alex) A =Injured(Alex)

* Action representation

— Action (WalkStairs (p: Person, from: Place, to: Place))

* PRECONDITION: At (p, from) A (from # to) A (Walkable (from, to) ¥
-Working(Lift))

* EFFECT: -At(p, from) A At (p, to)
— Action (JumpFromRooftop (p: Person, from: Place, to: Place,
sth:Thing))
* PRECONDITION: At (p, from) A (from # to) A Emergent(p)

* EFFECT: -At(p, from) A At (p, to) A (when Wearing(p, Parachute): -Dead(p) A
~Injured(p))

A Story Plan

* Astory can be represented as a partial-order
plan, a tuple <S5, O, C> where
— S is a series of events (i.e., instantiated plan
operators),

— O is temporal ordering information represented as
(s1 <s2) where sl precedes s2,

— Cis a list of causal links where a causal link is
represented by (s, t; c) notating a plan step s
establishes ¢, a precondition of a step t

Initial State

; }
\ have (Butler, Wine)

have (Butler, Poison) serving (Butler, Lord)

(1) Put-poison(Butler, Wine)

have (Butler, Wine)

(2) Carry-wine (Butler, Lord, Wine)
/

poisoned(Wine) ready-to-drink(Lord, Wine)

(3) Drink--wine (Lord, Wine)

/

drinking(Lord, Wine)

(4) Fall-down(Lord, Wine)

/

dead(Lord)

Goal State

1.

2.

3.

4.

HTN

construct the root node with an abstract operator which performs
the given goal task

select an abstract operator of which preconditions are true
— if no such abstract operator is found, return failure

decompose the abstract operator into subtasks as encoded in the
action schema

— if all the children of the node are primitive actions, return the
primitive actions as a solution

go to step 2

Fast, practical, straightforward =2 popular in industry
Recipes, interaction between subtasks

HTN Representation example (Tate,
1977)

1
Ela

"\,
—

NONLIN: Generating Project Network, Austin Tate (1977)

ACTSCHEMA DECOR
PATTERN «DECORATE®»
EXPANSION

ACTION <<FASTEN PLASTER AND PLASTER BOARD»

ACTION «POUR BASEMENT FLOOR>>

ACTION <<LAY FINISHED FLOORING»

ACTION <<FINISH CARPENTRY>>

ACTION «SAND AND VARNISH FLOORS>>

ACTION «PAINT»
ORDERINGS 1 >3 6
CONDITIONS
UNSUPERVISED «ROUGH PLUMBING INSTALLED» AT 1
UNSUPERVISED «ROUGH WIRING INSTALLED» AT 1
UNSUPERVISED « AIR CONDITIONING INSTALLED» AT
UNSUPERVISED «DRAINS INSTALLED» AT 2
UNSUPERVISED «PLUMBING FINISHED» AT 6
SUPERVISED «PLASTERING FINISHED>> AT 3 FROM 1
SUPERVISED <<BASEMENT FLOOR LAYED» AT 3 FROM 2
SUPERVISED «FLOORING FINISHED» AT 4 FROM 3
SUPERVISED «CARPENTRY FINISHED» AT 5 FROM 4
SUPERVISED <<PAINTED» AT 5 FROM 6.

END;

oo whN -

>5 SEQUENCE 2 TO 5

HTN example (Cavazza et al.,

Take
her out

A

Send
Imessage;

Gain
affection) 1

Be
1 friendly) 2
. Say i
Select) 4 Give) 3 nice things) 1 Be:,réerﬂd 5
gift gift to her viend

== ==

‘ Goto Give Goto Send Goto Send
5 Rachel gift Rachel | |message} | friends | |message

Isolate
her

Ask her
friend

5 Sing her’

Ask
them L fasvc?nngte 2

her mom

fAttract het

2002)

@ !
Ask
someone | 3 1
else
o -y

Send Get Send Get
messagef reply messagef reply

Take her

aside z

Talk to
her worst) 3 Phone) 1 5
enemy.

= = = =
Goto Send Goto Send Goto Send | Goto Send Tum Send
others | place | | worst enemy | telephone || message| | towards her | |message|

Send
message

Goto

friend message diary diary diary phone | number

Send | Goto Pick up Read Go to |Dial phone

:Friend_Free :Friend_Listen :Diary_Free :Hands_Empty :Phone_Nearby :Phone# :Mom_Listen
:Phone_Free

Dating with Rachel (Cavazza et al,,
2002)

FAL

.-’-":-Gfldbs‘ét!&tnbub : UBUDUEUDUDGU 5 B Uﬁdﬁdﬁuﬁ:ﬂbﬂé
(2lz]z]2) BE08

afals]e)

(a) (b) (¢) (d)

Figure 3. User intervention: (a) Ross goes to get a box of chocolates. (b) The user sees this and steals the chocolates. (c) Ross can’t
find them, so he (d) replans and gets roses instead.

Generating Game Worlds and
Stories Together

Mark O. Ried|
Georgia Tech

A Story Plan

i N A ol

Take (paladin, water-bucket, palace)

Kill (paladin, baba-yaga, water-bucket, graveyardl)
Drop (baba-yaga, ruby-slippers, graveyard]l)

Take (paladin, shoes, graveyardl)

Gain-Trust (paladin, king-alfred, shoes, palace)
Tell-About (king-alfred, treasure, treasure-cave, paladin)
Take (paladin, treasure, treasure-cave)

Trap-Closes (paladin, treasure-cave)

Solve-Puzzle (paladin, treasure-cave)

Trap-Opens (paladin, treasure-cave)

Story play and open-ended play

e Story play progresses the game world via a
sequence of narrative events towards a
desired conclusion

* Open-ended play encompasses player
activities that do not progress (nor inhibit) the
story plan

— E.g., exploring the spatial environment,
encountering random enemies, collecting items

Integrating play into a story

* Challenges

— A story plan only contains the essential steps to
progress toward a goal situation

— Plan steps are abstract events e.g., solve puzzle

e Goal

— Input: a list of events that reference locations of
known types

— Generate a game world that allows a linear
progression through the events

Mapping from story to space

* Metaphor of islands and bridges
— Islands: spatial areas where events occur

— Bridges: spatial areas between islands where
open-ended game play occurs

* Note: Bridges can branch. The player does not
necessarily need to visit in the course of the story.

Game world generation: 3 steps

(1) Parse a story plan for location information
referenced by events

(2) Generate an intermediate representation
of the space

(3) Visualize the space graphically

Step 1: Create Islands

* Extract a sequence of locations from a plan
* Each location becomes an island

* Requirement
— The story plan must be fully ordered
— Each event must be associated with a location

— Each referenced location must have a type
e Can be found in the initial state

A Story Plan

Take (paladin, water-bucket, palace)

Kill (paladin, baba-yaga, water-bucket, graveyardl)
Drop (baba-yaga, ruby-slippers, graveyard]l)

Take (paladin, shoes, graveyardl)

Gain-Trust (paladin, king-alfred, shoes, palace)
Tell-About (king-alfred, treasure, treasure-cave, paladin)
Take (paladin, treasure, treasure-cave)

Trap-Closes (paladin, treasure-cave)

Solve-Puzzle (paladin, treasure-cave)

0. Trap-Opens (paladin, treasure-cave)

i Al

Hero (paladin), NPC (baba-yaga), NPC (king-alfred), Place (palace),
Place (graveyardl), Place (treasure-cave), Thing (water-bucket),
Thing (treasure), Thing (ruby-slippers), Type (baba-yaga, witch),
Type (king-alfred, king), Type (palace, castle),

Type (graveyardl, graveyard), Type (treasure-cave, cave),

Type (water-bucket, bucket), Type (ruby-slippers, shoes),

Type (treasure, gold), Evil (baba-yaga) ...

Step 2: Intermediate representation

 Game world as a tree of location types

— Indicates the size of the game world, the number
of unique locations, and which locations are
adjacent to each other

0

where story plan events are to occur

Environment Transition Graph

captures the game designer’s beliefs about good
environment type transitions

probability of transitioning from one location
type to another

03

| »{ \S
grave- 0.4

Space Tree Generation

e GA starts with initial population of random trees

 Optimized based on

— Degree to which the number of bridges nodes in the
space tree between islands have the preferred length

— Whether the bridges have the preferred branching
factor

— Degree to which the length of side paths—branch
nodes that are not directly between two islands—
matches the preferred side path length

— How closely environment type transitions between
adjacent nodes match the environment transition
graph probabilities

Step 3: Graphical Realization

* Visualize a game world described by a space tree

&y
S&

Step 3: Graphical Realization

e 2-D, top-down, tile- based

* Depth-first traversal of the space tree, placing each
child adjacent to its parent on a grid

* If mapping is not feasible, generate a new space tree

- |- fgrave-\ -|
-1-\yard J- -}

Graphical instantiation of Location

* Location type determines graphical assets
— E.g, town: buildings, paving stones, towers

* Placing each asset by

— Custom distribution

— Gaussian distribution

Graphical instantiation

* Location type determines graphical assets
— E.g, forest: trees, bushes, grass

* Placing each asset by
— Custom distribution
— Gaussian distributio

Gaussian
distribution

grave-
yard

Castle
|- Take bucket

S: Gam king's trust

6: King tells about

freasure

Graveyard
2: Kill witch

3 lake dropped shoes

Cave

lake treasure

Different worlds for the same plot

Greater Branching parameter

Little Branching parameter

More Issues

* (a) the world must be populated with NPCs

— Parse the story plan and instantiate sprites (based
on NPC types) in the location of the event they
first participate in

* (b) the NPCs must act out the story

— Reactive script, similar to HTN (AND-OR tree
structure)

 Narrative directive behaviors
* Local autonomous behaviors

Video

e http://www.youtube.com/watch?
v=8xeln/JCrgE

Lab Session — Red Riding Hood

(defdomain red2
(
(:method (visit ?who ?whom)
by-walk
((at ?who ?x) (at ?whom ?y) (walkable ?x ?y))
(('walk-to ?who ?x ?y)))

(:method (eat ?who ?what)
((hungry ?who) (predator ?who) (alive ?who) (alive ?what) (not (equal ?who ?what)))
(('eat-alive ?who ?what)))

(:operator (!walk-to ?p ?here ?there)
((at ?p ?here))
((at ?p ?here))
((at ?p ?there)))

(:operator (!eat-alive ?who ?whom)
((at ?who ?locl) (at ?whom ?loc1) (alive ?whom) (hungry ?who))
((alive ?whom) (hungry ?who))
((full ?who)))))

Problem definition

(defproblem problem red?2
((at Red RedHouse)
(at Granny GrannyHouse)
(at Wolf GrannyHouse)
(alive Red) (alive Wolf)
(predator Wolf) (hungry Wolf)
(walkable RedHouse GrannyHouse))

((visit Red Granny) (eat Wolf Red)))

Run the program

cd examples/red2; rm red2.java; rm red2.txt; rm
problem.java; rm *.class

administrators-MacBook-Air-4:jshop2 byucS
xcrun make 12

cd examples/red2; java JSHOP2.InternalDomain
red?2

cd examples/red2; java JSHOP2.InternalDomain -
ra problem

cd examples/red?2; javac problem.java
cd examples/red?2; java problem

Thanks!

