Lecture 3:
Constructive
Generation Methods for
Dungeons and Levels

Procedural Content Generation, Autumn 2013

Noor Shaker and Antonios Liapis




VVhat makes
a good level?




® | ong!

® Unpredictable?

® Branching?

® Even level of challenge!

® Affords different playing styles?
® Beautiful?

® Realistic!?

® Balanced!?
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How could we
generate levels with
these properties!




Simple Roguelike
dungeon generation
algorithms




Binary space partitioning

choose a random direction : horizontal or
vertical splitting

choose a random position (x for vertical, y
for horizontal)

split the dungeon into two sub-dungeons

call the same procedure for each sub-
dungeon until finished

Finally, create a room in each leaf and
connect siblings
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Binary space partitioning

After 4 splitting




Binary space partitioning

Creating the rooms




Binary space partitioning

Adding level-| corridors




Binary space partitioning

Level-2 corridors




Binary space partitioning

The complete dungeon




Procedure

start with the entire dungeon area (root node of the BSP tree)
divide the area along a horizontal or vertical line
select one of the two new partitions
if this partition is above than the minimal acceptable size:
go to step 2 (using this partition as the area to be divided)
select the other partition, and go to step 4
for every partition:
create a room within the partition by randomly
choosing two points (top left and bottom right)
within the partition’s boundaries
9: starting from the lowest layers, draw corridors to connect
rooms in the nodes of the BSP tree with children of the same
parent
10:repeat 9 until the children of the root node are connected

O Joy O s W
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Bros vs cons

® Bros:
® casy to implement
® no overlapping rooms or corridors
® casy to create group of rooms

® Cons

® very neat
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Agent-based methods

® | ess predictable

® | ess organized




A highly stochastic
method

l: initialize chance of changing direction Pc=5

2: initialize chance of adding room Pr=5

3: place the digger at a dungeon tile and randomize its direction
4: dig along that direction

5: roll a random number Nc between 0 and 100

6: 1f Nc below Pc:

7 randomize the agent’s direction

8: set Pc=0

9: else:

10: set Pc=Pc+5

ll:roll a random number Nr between 0 and 100

12:1if Nr below Pr:

13: randomize room width and room height between 3 and 7
14: place room around current agent position

14: set Pr=0

15:else:

16: set Pr=Pr+5

17:1if the dungeon is not large enough:

18: go to step 4
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Less stochastic method

® Use look ahead to avoid overlaps

® Make few changes in the direction
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Procedure

l: place the digger at a dungeon tile

2: set helper variables Fr=0 and Fc=0

3: for all possible room sizes:

3: if a potential room will not intersect existing rooms:

Sl place the room

S5: Fr=1

6: break from for loop

7: for all possible corridors of any direction and length 3 to 7:
8: if a potential corridor will not intersect existing rooms:
9: place the corridor

10: Fc=1

11: break from for loop

12:1if Fr=1 or Fc=1l:
13: go to 2
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Less stochastic method




Less stochastic method
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Cellular automata
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® Computational paradigm based on local
Interaction

® Used in artificial life and complexity studies

® The value of each cell in iteration n+/ is
based on the value of neighbouring cells in
iteration n and some rule
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2D cellular automata

5 x 5 Moore

L neighbourhood
3 x 3 Moore

neighbourhood /

5 cell von [
Neumann
neighbourhood .
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Cellular automata for
real-time generation of
infinite cave levels

Lawrence Johnson, Georgios Yannakakis and Julian Togelius

FDG PCG Workshop 2010




This...

® A CA-based algorithm for generating
infinite 2D caves

® simple
® realtime
® |ooks good

® somewhat controllable
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The motivation

® Cave Crawler: a cooperative abusive dungeon
crawler

® Never ends - therefore needs to produce
infinite caves...
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CA cave generation

® Start with a square grid (e.g. 50*50) - all
floor

® Randomly switch a proportion of cells from
floor to rock

® Run a CA n times, where each cell is set to:
rock: if at least T neighbours are rock
floor: otherwise

® Fill in the interior of rock formations
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Core CA mechanic

3 x 3 Moore
neighbourhood




Parameters

® r:initial proportion of rock cells (0.5)
® n: CA iterations (4)

® [:neighbourhood value threshold that
defines a rock (5)

® M:Moore neighbourhood size ()
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(a) Random map
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Adjacent rooms

® The infinite cave needs to be contiguous -
and you need to be able to turn back!
(Visited rooms stored as random seeds)

® Generate all four neighbours of a new
room

® Dig tunnels from the central room to the
new rooms at the shortest points

® Run the CA m times (2) on all five rooms
together to smooth out edges
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Figure 3: A 3 x 3 base grid map generated with CA.

Rock and wall cells are represented by red and white

color respectively. Grey areas represent floor. (M =
2: T =13:n =4;r = 50%)
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Controllable?

Parameters can be varied,
but what do they mean!?




)n=2,M=2T=13 (gn=3, M=2T=13 (h)n=4 M=2T=13
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Spelunky

........
- fant ey Qa

® Roguelike-like platformer

® Combines the fast pace of the platformer
with the replayability and unpredictability of

the roguelike
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Spelunky level generation
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Each level is divided into a grid of |16 rooms.




Spelunky level generation
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A path is drawn from entrance at the top
to exit at the bottom.




Spelunky level generation

Each room is selected from a set of templates,
so as to fit in the path drawn in the previous step
(and also with the position in the level).
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Spelunky level generation

Randomised chunks in each room add variation.




Spelunky level generation

Finally, critters, traps, treasures etc are added.




Spelunky level generation
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The 2010 Mario Al

Championship:Level
Generation Track

Noor Shaker, Julian Togelius, Georgios N.Yannakakis,
Ben Weber, Tomoyuki Shimizu, Tomonori Hashiyama,
Nathan Sorenson, Philippe Pasquier, Peter Mawhorter,

Glen Takahashi, Gillian Smith and Robin Baumgarten
|IEEE TCIAIG, December 201 |
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Infinite Mario Bros

® Open-source Java clone of Super Mario
Bros (17 3?)

® Developed by Notch (!)

® |nfinite level generation - but levels are
quite simple

® Developed into the Mario Al Benchmark
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Previous work:
player level preferences

o N euro eVOI Uti on ary Level features and rules, playing behavior

preference learning
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Player Experience
R (fun, frustration, anxiety, ...)

010

C. Pedersen, J. Togelius, G. N. Yannakakis., Modeling Player Experience for

ﬂ Content Creation /EEE TCIAG, 2010
i
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http://www.bluenight.dk/mario.php
http://www.bluenight.dk/mario.php

The Mario Al
Championship

® Based on different versions of the Mario Al
Benchmark

® Gameplay track: controllers that play as
well as possible

® | earning track: controllers that learn to
play particular levels

® Turing track: controllers that play in a
human-like manner

® | evel generation track: level generators
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Level generation track
2010

® Six entries from three continents

® Fach judge played a test level, and two
levels generated by different generators,
and then indicated a preference

® (Generators were provided with
information on how the judge played on
the test level, to allow adaptation
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Ben VWeber

® “Probabilistic multi-pass
generator”’ (ProMP)

® A number of passes from left to right
® Adds a new feature every pass

® No adaptation
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Weber

LI ]

Fig. 1. Passes applied by Ben Weber’s ProMP generator:(1) ground, (2) hills, (3) pipes, (4) enemies, (5) blocks, and (6) coins.
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Ben VWeber

® Playability?




This lab

® Get to know the Mario Al framework,
especially the level generation version

® Build a simple level generator (re-
implement any of the described, or do your
own thing)

® Think about the strengths and weaknesses
of your generator
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Have you thought
about the course
project yet!?




