Game rules and PCG

Mark Nelson

Fall 2013 IT UNIVERSITY OF COPENHAGEN

Encoding and generating game mechanics

" Encoding: a computer-readable representation of a game
" Generating: producing new games (or game variants)

= Game mechanics: a game’s rules, or core logic

IT UNIVERSITY OF COPENHAGEN

Is generating rules PCG?

= Narrow view of PCG defines it as generating game content
= Levels, items, terrain, ...

" Generating game rules becomes automated game design
" Not things in the game, but the core of the game itself

IT UNIVERSITY OF COPENHAGEN

Challenges

= How do we represent game mechanics?

= Games in general can be almost anything

= Computer games in general can be almost any kind of software,
almost as general as just code, an opague representation

IT UNIVERSITY OF COPENHAGEN

Properties of a useful encoding

Has elements that are common across games
Usually within a genre, at least for now

A large proportion of games in the encoding should be valid

High locality/editability: make game variants by changing
parts of an existing game

IT UNIVERSITY OF COPENHAGEN

More properties of a useful encoding

Human editable?
Modular?

Breadth of coverage?
Analyzable?

Often tailored to choice of how the space will be searched,
and how games will be chosen from it

IT UNIVERSITY OF COPENHAGEN

Two domains

" Board games

= 2d graphical-logic games

IT UNIVERSITY OF COPENHAGEN

The domain many existing systems focus on

Have a nice formal structure
Discrete, turn-based

There is an established culture of inventing variants

IT UNIVERSITY OF COPENHAGEN

Encoding board games

= What would an encoding need to be able to write down the
rules for a game like chess?

= [Brainstorm an encoding for chess-like games.]

IT UNIVERSITY OF COPENHAGEN

METAGAME

= Early system to generate game rules (1992)

" Has a game grammar that defines a space of games more
general than chess, but still roughly chess-like

= A specific game is a choice of rules from the grammar

IT UNIVERSITY OF COPENHAGEN

METAGAME’s encoding

Ontology: board, spaces, pieces with movement, capture,
promotion rules

Goals: stalemate, eradicate, or arrival

Symmetric by construction

"...a tradeoff between generality, where we prefer classes which can describe
the widest variety of games, and structure, where we prefer a class where the
individual games appear to have similar underlying structure"

IT UNIVERSITY OF COPENHAGEN

METAGAME — Turncoat chess

AAEWW
— Firefly
— Termite
— Slug
(pp. 21-22)

IT UNIVERSITY OF COPENHAGEN

METAGAME’s generator

" Probabilistic grammar: sample games from the grammar

= Works because:
= The space of games is dense in playable games
= Rough balance by symmetric construction

= QOther features:
= Cross-branch references to reuse logic
= Some high-level parameters

IT UNIVERSITY OF COPENHAGEN

METAGAME’s control knobs

Rule complexity
Decision complexity

Indirectly: Search complexity
Indirectly: Locality

IT UNIVERSITY OF COPENHAGEN

Optimizing for balance

METAGAME aims for rough balance by construction

Idea: Explicitly test for balance by self-play simulation

Need a general game-playing engine that can play any
game in the space. Then, a game is considered balanced if

win rates in self-play are near 50/50.

IT UNIVERSITY OF COPENHAGEN

Optimizing for balance

Hom & Marks (2007)

Significantly smaller space of games than METAGAME
Self-play with the Zillions of Games engine

Select for balanced games as the fitness function

IT UNIVERSITY OF COPENHAGEN

Evolutionary game design

Ludi system goes a step further

Criteria other than balance, e.g. aesthetics

Search a larger space, via recombination of game elements
Distinguish variants from new games (game novelty, game
distance metrics)

Wider range of boards

IT UNIVERSITY OF COPENHAGEN

The Ludi system

Player| ayer| oo @1);
SVACTRRN Y,

User Interface C Strategy \—-—> Policy

@es\ ;' Game Play (o

Game (*.gdl) QI y 1 Objec t; —»| @ @ k Criticism /—-—» Aesthetic score
General Game Player (Synthesis \—-—> New games
- o (* gdl)
... Ludi System
Game
Description

* Language

IT UNIVERSITY OF COPENHAGEN

Tic-tac-toe in Ludi

(game Tic-Tac-Toe
(players White Black)
(board
(tiling square 1i-nbors)
(size 3 3)

)

(end (All win (in-a-row 3)))

IT UNIVERSITY OF COPENHAGEN

(size 3 3) and (size 3 3 3)

()

> /
/ /
L —7

()

/ /
/ - /
-

QO

4

>/

IT UNIVERSITY OF COPENHAGEN

Playing an arbitrary game

Play the game using standard game-tree search
Needs a state evaluation function!

Twenty different advisors provide various assessments of a
particular board state

For each game, the linear combination of these advisors is
evolutionarily optimized

IT UNIVERSITY OF COPENHAGEN

Evaluating a candidate game

= Self-play the game using the optimized evaluation

= Measure various aesthetic criteria: aspects of how the
game is played, the ruleset, and the outcomes

= Combine the scores into a fithess value

IT UNIVERSITY OF COPENHAGEN

Aesthetic criteria

" 16 intrinsic: based on rules and equipment

= 11 viability: based on game outcomes
= Completion, duration, etc.

= 30 quality: based on trends in play

= Drama, uncertainty, etc.

IT UNIVERSITY OF COPENHAGEN

Combining the criteria

The 57 criteria need to be weighted into a single fitness
value

First, 79 sample games were scored

Then human players played and ranked some of these
games

The weight vector was fit using cross-entropy

IT UNIVERSITY OF COPENHAGEN

Searching the space of games

= A population was seeded with existing games

= New games evolved in a manner similar to genetic
programming
» Probabilistic selection
= Subtree crossover

IT UNIVERSITY OF COPENHAGEN

Searching the space of games

Population

Select Parents
.

\
\4

Baptise

IT UNIVERSITY OF COPENHAGEN

What about real-time games?

= Next cluster of experiments are on graphical logic games

= Games based on 2d movement of entities, simple physics,
rules triggered by collision between entities

IT UNIVERSITY OF COPENHAGEN

Togelius & Schmidhuber

IT UNIVERSITY OF COPENHAGEN

Game axioms

The game takes place in a gridworld, fixed walls, one agent,
red green and blue things

Agent can move up, down, left, right

Things might or might not move

Effect of things colliding with each other or the agent
depends on the color and the rules

IT UNIVERSITY OF COPENHAGEN

Rule representation

Maximum time (0-100)

Desired score (0-10)

Number of items of each color (0-20)
Movement logic for each color (1-5)

Collision effects (4 x 4 table)
Collision score effects (4 x 4 table)

IT UNIVERSITY OF COPENHAGEN

Movement logics

1. Still: does not move

2. Random short: change direction every time step

3. Random long: change direction every 1-10 time steps
4. Clockwise: turn right when facing wall

5. Counter-clockwise

IT UNIVERSITY OF COPENHAGEN

Collision effects

1. None: nothing happens
2. Die: if agent dies, game ends; if thing dies, thing

disappears
3. Teleport: move to a random free position, at least two steps

from agent

Score effects: -1, 0, or +1

IT UNIVERSITY OF COPENHAGEN

Collision effects

1. None: nothing happens
2. Die: if agent dies, game ends; if thing dies, thing

disappears
3. Teleport: move to a random free position, at least two steps

from agent

Score effects: -1, 0, or +1

IT UNIVERSITY OF COPENHAGEN

What is a good game of this kind?

A fun one, of course!

Hypothesis: fun == learning (Raph Koster)
Hypothesis 2: fun =? learnability by an algorithm

Games that are not learnable are no fun
Games that can be won without having to learn much are no fun

IT UNIVERSITY OF COPENHAGEN

Variations Forever

Goals:

Meta-game based on exploration of new types of games
Generator capable of generating a somewhat wider range
of games

Represent rules in logic, and generate games with desired
properties

IT UNIVERSITY OF COPENHAGEN

space_ resolution (32,24).
space_topology (spherical) .

background (grids; stars).

active agent(red; yellow; white; cyan).

agent_movement(red,asteroids; white,asteroids;
yellow, roguelike; cyan,pacman).

agent population(red,many; white,singleton;
yellow, singleton; cyan,many) .

agent collide effect (red,white,kill;
cyan,yellow,kill).

player agent (white).

obstacle distribution (enclosure; random walls;
random blocks) .

obstacle collide effect(red,kill; white, kill).

goal (kill all(red)).

IT UNIVERSITY OF COPENHAGEN

Searching the rule space

= Answer-set programming: logical inference/solving

= Ask a question, and get a set of answers

= "Show me a game that implements mechanic X.”

IT UNIVERSITY OF COPENHAGEN

pushes (A,B) :-
on collide (A,B,bounce),
on collide (B,A,bounce).

kills(A,B) :—- on collide(A,B,kill). -

indirectly pushes (A,B) :- pushes(A,B).

indirectly pushes (A,C) :- pushes(A,B),
indirectly pushes(B,C).

winnable via(indirect push kill (A,C)) :-
indirectly pushes(A,B), kills(B,C).

compute
player agent (A), goal(kill all(B)),
winnable via(indirect push kill(A,B)) }.

IT UNIVERSITY OF COPENHAGEN

VGDL

Videogame description language
Aimed at a simple, human-readable/writable
representation of graphical logic games

Wider range of games
Not yet automatically generated
But specifications can be played and simulated in pyVGDL

IT UNIVERSITY OF COPENHAGEN

VGDL

WWWWWWWWWWWWW
WA W W
W W w
W w W +wWwW
WWwW wl WWWWW
W w G w
w 1 WW
W 1 WW
WWWWWWWWWWWWW

= http://www.idsia.ch/~tom/publications/pyvgdl.pdf

IT UNIVERSITY OF COPENHAGEN

VGDL principles

Objects moving in a 2d game world
= Both grid-based and continuous physics versions exist

Rules are triggered by local interactions, which depend on
object properties (extensible)

Examples include frogger, missile command, etc.
https://github.com/schaul/py-vgdl/

IT UNIVERSITY OF COPENHAGEN

