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Maps and Landscapes:
where and why!

® |n a strategy game, to move units on
® |n a flight simulator, to fly over
® |n most first person games, to move in

® |n any game, as a backdrop
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Features of landscapes

® Heightmap
® Passable/impassable areas

® Points of interest (e.g. items, base locations,
spawn points)

® .. .other features possible
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Example: flight sim
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Example: StarCraft
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Example: Halo Reach
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Heightmap
representation

® Essentially a 2D grid with height values in
cells




Cloudy skies, plasma...




Fractal methods

® Based on self-similarity

® Did you know that all coastlines are of
infinite length?

Thursday, September 19, 13



Midpoint displacement

® 2D algorithm - creates “silhouettes™
through offsetting a line

® At each iteration, find the midpoint
between two points on a line, and raise or
lower this point a random amount

® parameter H:factor by which random
number range is multiplied each iteration

® This results in two new lines; do the same
for these lines (using range * H), etc.
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Diamond-Square

® Extension of midpoint displacement into
three dimensions

e Offsets the midpoints of squares rather
than lines

® [wo steps for each iteration:
® Diamond step: squares horizontal

® Square step: squares turned 45 degrees

Thursday, September 19, 13



Diamond-Square
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Recursive
implementation

diamondsquare (square) {
midpoint = diamond (square);
for all 4 edges {
edge midpoint = square (edge);
}

randrange *= H;

for all 4 resulting squares {
diamondsquare (new square);

}

J
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Wraparound?
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Perlin Noise

® A function for generating noise in n
dimensions

® Scale-free

® Very widely used in all computer graphics,
including in games and movies

® Combinations of Noise() with itself and
with other operators can give interesting
results - see paper

® Ken Perlin received an Oscar for it!
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Perlin Noise: basic idea

® Assign random gradient vectors to cells in a
matrix (using standard random number
generators)

® [hese gradients determine the height

® For values “between the cells” (non-integer
coordinates): interpolate

® Repeat at higher resolutions (“octaves™)
and lower amplitudes

® Just like diamond-square
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Perlin Noise in 2D

® Create a 2D grid with a randomly chosen
2D vector associated with each cell

® e.g,[0,0] is associated with the vector
[0.4,0.3] and [0, 1] is associated with
[0.1,0.7] etc.

® Smoothly interpolate (using e.g. cubic
interpolation) a surface that corresponds
to the vectors

Thursday, September 19, 13



5‘5 6,. )
P
5.69?4.31
3,4 6,4
. .

Thursday, September 19, 13




A taxonomy of PCG

® Online/Offline

® Necessary/Optional
® Random seeds/Parameter vectors
® Stochastic/Deterministic

® (Constructive/Generate-and-test
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In general,

PCG > randomness




Agent-based methods

® Use a number of “artificial agents” that
construct the landscape by acting on it

® Agents of different types do different jobs

® Could be more controllable than diamond-
square

® Could give rise to different types of
landscapes
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Controlled Procedural
Terrain Generation
Using Software Agents

Jonathon Doran and lan Parberry

Published in IEEE TCIAIG, 2010




D&P’s five agent types

® Coastline agents
® Smoothing agents
® Beach agents

® Mountain agents

® River agents
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Rules for agents

® Fach agent has a set number of “tokens” to
spend on actions

® Fach agent is allowed to see the current
elevation around it, and allowed to modify

It

® Agents don'’t interact directly
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In the beginning...

...there was a vast ocean.

Then came the first coastline agent.
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Coastline agents

® Multiply until they cover the whole coast

® Move out to position themselves right at
the border of land and sea

® Generate a repulsor and an attractor point

® Score all neighbouring points according to
distance to repulsor and attractor points

® Move to the best-scoring points, adding
land as they go along
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COASTLINE-GENERATE(agent)
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then

if tokens(agent) > limait

create 2 child agents
for each child

do

child

A

child

A

child

A

«— a random seed point on parent’s border
«— 1/2 of the parent’s tokens
«— a random direction

COASTLINE-GENERATE(child)

else

for each token

do

point <+ random border point

for each point p adjacent to point

do

score p

fill in the point with the highest score
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Coastline agents

Varying action sizes

Thursday, September 19, 13



Smoothing agents

® Jake random walks on

the map

® Change the elevation of

each visited point to

(almost) the mean of its

extended von Neumann

neighbourhood
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Smoothing agents

SMOOTH( starting-point)

1 location < starting-point

2 for each token

3 do

4 heightiocation < weighted average of neighborhood
5 location < random neighboring point

Thursday, September 19, 13



Beach agents

® Select random position along the coast,
where coast is not too steep

® Flatten an area around this point (leaving
small variations)

® Move randomly a short direction away
from the coast, flattening the area
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Beach agents

BEACH-GENERATE( starting-point)

1 location <« starting-point
2 for each token

3 do
4 if heightocation = limit
5 then
6 location < random shoreline point
7 flatten area around location
8 smooth area around location
9 inland <+ random point a short distance inland from location
10 for i < 0 to size(walk)
11 do
12 flatten area around nland
13 smooth area around inland
14 inland < random neighboring point

15 location <+ random neighboring point of location
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Beach agents

Varying beach width
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Mountain agents

® Start at random positions and directions

® Move forward, continuously elevating a
wedge, creating a ridge

® Turn randomly within 45 degrees from the
initial course

® Periodically offshoot “foothills”
perpendicular to movement direction
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Mountain agents

MOUNTAIN-GENERATE(startingyoint)

1 location < starting-point
2 direction < random direction
3 for each token
do
elevate wedge perpendicular to direction
smooth area around location
location < next point in direction
every n-th token
do

10 direction < original-direction 4 45-degrees

© 00 J O Ot =~

Thursday, September 19, 13



Mountain agents

Ped 30 = E)E W Hed 30

Narrow versus wide features
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River agents

Move from a random point on the coast
towards a random point on a mountain
ridge

“Wiggle” along the path
Stop when reaching too high altitudes

Retrace the path down to the ocean,
deepening a wedge along the path
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River agents

RIVER-GENERATE()

coast < random point on coastline
mountain < random point at base of a mountain
point «— coast
while point not at mountain
do
add point to path
point < next point closer to mountain
while point not at coast
do
flatten wedge perpendicular to downhill direction
smooth area around point
point < next point in path
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River agents

A dry river, and the outflow of three rivers
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Further questions

® Parameters... what parameters?

® What features of landscapes do we want to
be able to specify?

® How can the human and the algorithm
interact productively?
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Search-based methods

® Use an evolutionary algorithm, or other
stochastic optimization algorithm

® Evaluate candidate pieces of content using a
fitness function
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Issues in
search-based PCG

® Content representation and search space
® Direct or indirect!?
® Fitness function

® Direct, simulation-based, interactive!?
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Multiobjective Exploration
of the StarCraft Map Space

Julian Togelius, Mike Preuss,
Nicola Beume, Simon Wessing,
Johan Hagelback and Georgios N.Yannakakis




Our approach:

® Direct/indirect map representations
® An ensemble of fithess functions

® Multiobjective evolution
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StarCraft

® C(Classic real-time
strategy game

e Korea’s unofficial
national sport

® Jwo or three player
competitive matches

® T[hree distinct races
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StarCraft map features
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Traditional (constructive)
map generation

® Place features on maps according to some
heuristic

® c.g.fractals, growing islands, cellular
automata

® Hard or impossible to optimize for
gameplay properties

® Restrictions on possible content necessary
in order to ensure valid maps
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Our approach

® Define desirable traits of RTS maps

® Operationalize these traits as fithess
functions

® Define a search space for maps

® Search for maps that satisfy the fitness
functions as well as possible, using
multiobjective evolution

® (visualize trade-offs as Pareto fronts)
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Desirable traits
of an RTS map

Playability
Fairness
Skill differentiation

Interestingness




Playability
fithess functions

® Base space: minimum amount of space
around bases

® Base distance: minimum distance between
bases (via A*)
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Fairness

fitness functions

® Distance from base to closest resource

® Resource ownership

® Resource safety

® Resource fairness

(b) safe resources
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Skill differentiation
fitness functions

(also contribute to interestingness)

® Choke points
(narrowest width of shortest path)

® Path overlapping




Dual map
representation

® |ndirect representation: a vector of real
numbers in {0..1}

® Direct representation: a 64x64 grid
corresponding to a StarCraft map, including
impassable areas, bases, resource sites

® (Genotype to phenotype mapping:
before fithess calculation
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Genotype to
phenotype

® [wo or three bases, five mineral sources
and five gas wells: (phi, theta) coordinates

® Rock formations represented indirectly
using “turtle graphics”. Each formation has:

® (x,y) starting position
® probability of turning left/right

® probability of gaps (“lifting the pen™)
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Experiments

® Used the SMS-EMOA

® fast hypercube-based descendant of
NSGA-II

® Tried optimizing each pair of objectives
® All at once not computationally feasible!

® Population 20, 50000 evaluations
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Last piece of the puzzle

® From phenotype to StarCraft maps via
SCPM

® Further manual editing possible but not
hecessary

® (shown maps slightly aesthetically
enhanced)
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Evolved map

Resource fairness vs. choke points
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Another evolved map

Resource fairness vs. choke points
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Three-player map




Another three-player map




Observations on the
fitness functions

® Some objectives are trivial to optimise, e.g.
base space was made into a constraint

® Some are easy and do not conflict with
other objectives, e.g. resource ownership

® Some are easy but partially conflict with
others, e.g. base distance

® Some are not so easy and highly
conflicting, e.g. choke points
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| eft: resource fairness vs. base distance
Right: resource fairness vs. choke points
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Composite pareto fronts

| eft: resource fairness vs. base distance
Right: resource fairness vs. choke points
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What did we find!

® Our map representation works:
We can reliably evolve good-looking,
playable maps

® Some of our fitness functions are good
® Some are not

® VWhat to do with the Pareto fronts?
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What to do with the
Pareto fronts!?

® Human designers might use Pareto fronts
to understand the tradeoffs between
different desirable properties

® Use evolved maps as starting points for
further human design

® Or algorithmically select maps in automatic
content generation

Thursday, September 19, 13



A taxonomy of PCG

® Online/Offline

® Necessary/Optional
® Random seeds/Parameter vectors
® Stochastic/Deterministic

® (Constructive/Generate-and-test
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