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Plants?

• Core feature of the natural world... 
therefore of many games

• Need for believability

• Infinitely detailed

• Similar and recognisable, but not identical

• Need for compact representation

• Need for automatic large-scale generation
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SpeedTree
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Self-similarity
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Self-similarity

• Nature has obviously thought out some 
clever way of representing complex 
organisms using a compact description...

• ...permitting individual variation...

• ...why is this relevant for us?
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L-systems

• Introduced by Aristid Lindenmeyer 1968, to 
model plant development

• Creates strings (text) from an alphabet 
based on a grammar and an axiom

• Closely related to Chomsky grammars (but 
productions carried out in parallel, not 
sequentially)

Friday, September 27, 13



An example L-system

• Alphabet: {a, b}

• Production rules 
(grammar):
a>ab
b>a

• Axiom: b

b
|
a
└

  a b
  ┘ │
a b  a
┘ │ └

a b a a b
             _/  /  ┘ └  \

a b a a b a b a

Example of a derivation in a 
DOL-System
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Types of L-systems

• Context-free: production rules refer only 
to an individual symbol

• Context-sensitive: productions can depend 
on the symbol’s neighbours

• Deterministic: there is exactly one 
production for each symbol

• Non-deterministic: several productions for 
a symbol
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A graphical interpretation 
of L-systems

• Invented/popularized by Prusinkiewicz 1986

• Core idea: interpret generated strings as 
instructions for a turtle in turtle graphics

• Read the string from left to right, changing 
the state of the turtle (x, y, heading)
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Example
graphical L-system

• Alphabet: {F, f, +, -}

• F: move the turtle forward (drawing a line)

• f: move the turtle forward (don’t draw)

• +/-: turn right/left (by some angle)
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Graphical L-system
• axiom: F+F+F+F

• grammar:
F>F+F-F-FF+F+F-F

• Turning angle: 90º

n=0

n=1

n=2
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Graphical L-systems

• What’s the limit of these systems?
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Bracketed L-systems

• Alphabet: {F, f, +, -, [, ]}

• [: push the current state (x, y, heading of the 
turtle) onto a pushdown stack

• ]: pop the current state of the turtle and 
move the turtle there without drawing

• Enables branching structures!
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Bracketed L-systems
• Axiom: F

• Grammar: F>F[-F]F[+F][F]

• Turning angle: 30º

n=1..5
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3D graphics

• Turtle graphics L-system interpretation can 
be extended to 3D space:

• Represent state as x, y, z and pitch, roll, yaw

• +, -: turn (yaw) left/right

• &, ^: pitch down/up

• \, /: roll left/right (counterclockwise/
clockwise)
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3D interpretation
of L-systems
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3D interpretation
of bracketed L-systems
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How do we design 
these L-systems?
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Evolving L-systems

• How can we combine L-systems with 
evolutionary computation?
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Evolving L-systems
• Evolving the axiom

• Evolving the grammar:

• change the shape of one or more 
production rules, or

• add/remove/replace productions

• counter limits

• Evolving the interpretation:

• Evolve production probabilities

• Evolve other aspects (e.g. turning angles)
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Evolving L-systems

• One example: Ochoa evolved the 
consequent of a single production rule

• starting from F>F[-F]F[+F]F

• Mutation: replace single symbols, or blocks 
of a few symbols

• Crossover: swap complete “sub-trees”
(like in genetic programming)
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Fitness functions

• Phototropism

• Bilateral symmetry

• Proportion of branching points
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Evolved L-systems
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Evolved L-systems
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Evolved L-systems
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...and this was an 
extremely simple L-

system!
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2D
L-systems

be found in [16]. Discrete dynamical systems such as cellular automata [7]
can also be used as indirect representations of this type.

Cellular representations are an indirect representation that use a grammar
as the basis of their encoding. The representation consists of a specification
of strings of production rules in the grammar that, when applied, yield the
final structure. These representations were first applied to artificial neural
nets [8, 9] but have also been applied to finite state game-playing agents [3].
Lindenmayer systems or (L-systems) [13] which were devised as computational
models of plants [17] are an older type of grammatical indirect representation
that share many features with cellular representations. L-systems have been
applied to targets as diverse as music [6], error correcting codes [4], and the
morphology of virtual creatures [10]. In this chapter L-systems will be used
to evolve a diverse collection of virtual landscapes. This encoding of virtual
landscapes uses a few hundred bytes of data to specify a collection of large,
complex virtual images of the same landscape at different resolutions.

Rules:

A

A

A A

B B

B

Axiom:

A

B

A
A B

B A

BA

Two Expansions:

A A

B

B

B

A A

A

A B

A

BBB

B

A

Fig. 1.1. The axiom and rules for a simple two-dimensional L-system, together with
two expansion of the axiom.Friday, September 27, 13



Terrain interpretation 
of 2D L-systems

• Each group of four letters is interpreted as 
instructions for lowering or raising the 
corners of a square

• e.g. A=+0.5, B=-0.5

A B

B A
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Terrain interpretation 
of 2D L-systems

• In next iteration, the 2D L-system is 
rewritten once, and each square is divided 
into two

• “Doubling the resolution”

A B

B A

A B

B A
A B

B A

A B

B A
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Terrain interpretation 
of 2D L-systems

Fig. 1.3. The result of six expansions of the midpoint L-system given in Figure 1.1
with h1 = 0.8 h2 = 0.2 and ω = 0.7.

expansion (first, second, etc.). Thus, on the first expansion, the value added
to the center of the initial square when it is partitioned is the appropriate hi

for the axiom. In the next expansion, ω · hi will be added to the heights of
the centers of the four squares the initial square was divided into. In the third
expansion, the values added will have the form ω2 · hi for the centers of all
sixteen squares present in that expansion, and so on. The value ω controls the
degree to which the heights associated with symbols decay with expansion.
In the experiments in this chapter, values for ω between 0 and 1 are used. A
rendering of the example midpoint L-system given in Figure 1.1 is shown in
Figure 1.3.

An application of evolving L-system grammars appears in [12, 15] where
the L-system provided the connection topology of an artificial neural net. The
parameters of the L-system interpreter were fixed in that study, not evolved.
Evolutionary algorithms that set the parameters of an L-system appear in
[1, 2]. In [11] L-systems are used to specify a body for an artificial agent that
is co-evolved together with a control system. The type of L-system presented
in this chapter is unique in co-evolving the parameters used in interpretation
together with the L-system grammar. The current application is intended to
generate rugged versions of idealized smooth landscapes for use in virtual
reality applications. Ideally, the algorithm will generate a selection of differ-

Six rewritings of A>ABBA, B>AABB

Friday, September 27, 13



Evolved 2D L-system 
terrains

Table 1.1. 95% confidence intervals on the mean RMS error (fitness) for agreement
between the best midpoint L-systems in each run and the target landscape for each
of the nine sets of 100 evolutionary runs performed to study the impact of changing
the decay parameter ω and number of symbols n.

Mean RMS error, 95% confidence intervals
Value of ω

n 0.8 0.9 0.95
4 (0.0490, 0.0500) (0.0487, 0.0497) (0.0487, 0.0479)
8 (0.0466, 0.0475) (0.0489, 0.0499) (0.0511, 0.0523)
16 (0.0426, 0.0434) (0.0459, 0.0469) (0.0514, 0.0527)

of spikes at various positions along the crater’s rim. One of the better look-
ing craters, also the most fit, is shown in Figure 1.8. The 95% confidence
interval for mean RMS error for the craters evolved with n = 32 symbols is
(0.1397, 0.1478).

Fig. 1.8. The most fit crater located in the evolutionary runs on the crater land-
scape. This crater uses n = 32 symbols in its midpoint L-system.
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Evolved 2D L-system 
terrains

Fig. 1.9. Varying the level of detail for a hill. The same midpoint L-system for
the hill landscape is rendered on N × N grids for N=16, 32, 64, and 128. This
corresponds to 4, 5, 6, and 7 expansions of the L-system which yield increasing
levels of detail.

different quadrants of the expansion share information only at their bound-
aries, and that information does not change during the expression process.
Figure 1.9 shows an example of a single midpoint L-system for the hill land-
scape expanded to four different levels of detail. The highest level of detail
shown, seven expansions of the L-system, is the level of detail at which the
L-system was evolved. Figure 1.10 shows a crater with 5 and 6 expansions.

If the level of detail of the evolved midpoint L-systems is increased beyond
the level at which it was evolved, the behavior can become unpredictable.
Expansions performed beyond the evolved level of detail with the L-systems
located in this study produced remarkably spiky pictures, and so it is probably
a good idea to evolve midpoint L-systems to the maximum level of detail
required. The most expensive part of the midpoint L-system training software
is fitness evaluation. The time for a fitness evaluation is proportional to 2n

Very short specification, yet infinite resolution!
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Grammars for 
adventure level design

[10] & [11]). Following this structure, the player crosses into the 
realm of adventure (the dungeon) after a confrontation with a 
threshold guardian. Around halfway or two-thirds into the level 
the player defeats a mid-level boss and obtains the boomerang 
signaling the start of the third and final act which ends with the 
defeat of the level boss. The spatial qualities of the Forest Temple 
are different. Its basic layout follows a hub-and-spoke layout that 
provides easy access to many parts of the temple. The boomerang 
acts as key to many locks that can be encountered right from the 
beginning. Once it is obtained extra rooms in the temple are 
unlocked for the player to explore, a structure frequently found in 
adventure games [12]. 

3. GENERATIVE GRAMMARS 
Generative grammars originate in linguistics where they are used 
as a model to describe sets of linguistic phrases [13]. In theory, a 
generative grammar can be created that is able to produce all 
correct phrases of a language. A generative grammar typically 
consists of an alphabet and a set of rules. The alphabet is a set of 
symbols the grammar works with. The rules employ rewrite 
operations: a rule specifies what symbol can be replaced by what 
other symbols to form a new string. For example: a rule in a 
grammar  might  specify  that  in  a  string  of  symbols,  symbol  ‘S’  can 
be   replaced   by   the   symbols   ‘ab’.   This   rule   would   normally   be 
written  down  as  ‘S   ab’.  Generative  grammars typically replace 
the symbol (or group of symbols) on the left-hand side of the 
arrow with a symbol or group of symbols on the right-hand side. 
Therefore, it is common to refer to the symbols to be replaced as 
the left-hand side of the rule and to refer to the new symbols as 
the right-hand side. Some symbols in the alphabet can never be 
replaced because there are no rules that specify their replacement. 
These symbols are called terminals and the convention is to 
represent them with lowercase characters.  The  symbols  ‘a’  en  ‘b’ 
in the last example are terminals. Non-terminals have rules that 
specify their replacement and are conventionally represented by 
uppercase  characters.  The  symbol  ‘S’  from  the  previous  rules  is  an 
example. For a grammar that describes natural language 
sentences, terminal symbols might be words, whereas non-
terminal symbols represent functional word groups, such as noun-
phrases and verb-phrases.  The  denominator  ‘S’  is  often  used  for  a 
grammar’s  start  symbol.  A  generative  grammar  needs at least one 
symbol to replace; it cannot start from nothing. Therefore, a 
complete generative grammar also specifies a start symbol.  
Grammars like these are used in computer science to create 
language and code parsers; they are designed to understand and 
recognize language. However, grammars are also suited to 
generate language. It is easy to see that simple rules can produce 
quite interesting result especially when the rules allow for 
recursion: when the rules produce non-terminal symbols that can 
directly or indirectly result in the application of the same rule 
recursively.  The  rule  ‘S   abS’  is  an  example  of  a  recursive  rule 
and  will   produce   endless   strings   of   ab’s.   The   rule   ‘S   aSb’   is 
another   example   and   generates   a   string   of   a’s   followed   by   an 
equal  number  of  b’s.  Generative  grammars  developed  for  natural 
languages are capable of capturing concepts that transcend the 
level of individual words, such as argument construction and 
rhetoric, which suggests that generative grammars developed for 
games should be able to capture higher level design principles that 
lead to interesting levels at both micro and macro scopes.  

Generative grammars can be used to describe games when the 
alphabet of the grammar consists of a series of symbols to 
represent game specific concepts, and the rules define sensible 
ways in which these concepts can be combined to create well-
formed levels. A grammar that describes the possible levels of an 
adventure game, for example, might include the terminal symbols 
‘key’,   ‘lock’,   ‘room’,   ‘monster’,   ‘treasure’.   While   the   rules   for 
that grammar might include: 
1. Dungeon  Obstacle + treasure 
2. Obstacle  key + Obstacle + lock + Obstacle 
3. Obstacle  monster + Obstacle 
4. Obstacle  room 
In this case, when multiple rules specify possible replacements for 
the same non-terminal symbol, only one rule will be selected. This 
can be done (pseudo-)randomly. The rules can generate a wide 
variety of strings including: 
1. key + monster + room + lock + monster + room + treasure 
2. key + monster + key + room + lock + monster + room + lock + 

room + treasure 
3. room + treasure 
4. monster + monster + monster + monster + room + treasure 
The strings produced by the grammar discussed above are not all 
suited for a game level. Especially string 3 is far too short even in 
the limited example above. The problem is not with generative 
grammars as such but the quality of the rules used in the example. 
In fact generative grammar can easily counter these problems by 
creating rules that capture level design principles better, such as: 
1. Dungeon  Obstacle + Obstacle + Obstacle + Obstacle + 

treasure 
2. Dungeon  Threshold Guardian + Obstacle + Mini-Boss + 

reward + Obstacle + Level-Boss + treasure. 
Where rule 1 incorporates the idea that a dungeon needs to have a 
minimal length to be interesting at all, and rule 2 directly 
incorporates a three act story structure like the one described for 
Forest Temple level of Zelda: The Twilight Princess above.  
Generative grammars can be used in different ways to produce 
content for games. Game experts and designers can produce a 
grammar to generate content for a particular game. Drafting such 
a grammar would by no means be an easy task, but the initial 
effort vastly outweighs the ease by which new content can be 
generated or adjusted. Furthermore, grammars and procedurally 
content can be used to aid the designer by automating some, but 
not all, design tasks. This approach was taken by Epic Games for 
the generation of buildings and large urban landscapes. It proved 
to be very versatile as it allowed designers to quickly regenerate 
previous sections with the same constraints but with new rule sets 
without having to redo a whole section by hand [14]. Finally, it 
would be possible to grow grammars using evolutionary 
algorithms that select successful content from a test environment. 
The grammars presented in this paper were all drafted using the 
first method. Evolutionary grammars, although a tantalizing 
concept, are beyond the scope of the material presented here. 
Relevant applications of generative grammars can also be found in 
with Lindenmayer Systems (L-Systems). Lindenmayer was a 
biologist who used grammars to describe the growth of plants, but 
L-Systems have been applied to generate many different spatial 
outputs [15]. L-Systems are used today in games to generate trees 
and other natural structures. L-Systems have been extended for 

could give...
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a grammar would by no means be an easy task, but the initial 
effort vastly outweighs the ease by which new content can be 
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content can be used to aid the designer by automating some, but 
not all, design tasks. This approach was taken by Epic Games for 
the generation of buildings and large urban landscapes. It proved 
to be very versatile as it allowed designers to quickly regenerate 
previous sections with the same constraints but with new rule sets 
without having to redo a whole section by hand [14]. Finally, it 
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Graph grammarsthe procedural generation of city models [16]. This extension 
serves to create looped networks of roads, where original L-
Systems only generate tree-structures. The extension allows a 
street that is generated close to a previously generated street to 
intersect the latter, and thus create a loop back to the previously 
generated structure. 

4. GRAPH GRAMMAR TO GENERATE 
MISSIONS 
Graph grammars are discussed in relation with level generation by 
David Adams in his 2002 Bachelors thesis Automatic Generation 
of Dungeons for Computer Games [17]. Graph grammars are a 
specialized form of generative grammars that does not produce 
strings but graphs consisting of edges and nodes. In a graph 
grammar one or several nodes and interconnecting edges can be 
replaced by a new structure of nodes and edges (see figures 2 & 3; 
[18]). After a group of nodes have been selected for replacement 
as described by a particular rule, the selected nodes are numbered 
according to the left-hand side of the rule (step 2 in figure 3). 
Next, all edges between the selected nodes are removed (step 3). 
The numbered nodes are then replaced by their equivalents (nodes 
with the same number) on the right-hand side of the rule (step 4). 
Then any nodes on the right-hand side that do not have an 
equivalent on the left-hand side are added to the graph (step 5). 
Finally, the edges connecting the new nodes are put into the graph 
as specified by the right-hand side of the rule (step 6) and the 

numbers are removed (step 7). Note that graph grammars can have 
operations that allow existing nodes to be removed, these 
operations are not used in this paper. 
 

 
Figure 2. An example of a graph grammar rule 

 

 
Figure 3. The replacement operations according the rules from 

figure 2. 

 
Figure 4. Rules to generate a mission 
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operations that allow existing nodes to be removed, these 
operations are not used in this paper. 
 

 
Figure 2. An example of a graph grammar rule 

 

 
Figure 3. The replacement operations according the rules from 

figure 2. 

 
Figure 4. Rules to generate a mission 
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Graph grammars are well suited to generate missions as missions 
are best expressed as nonlinear graphs. It would need an alphabet 
that consists of different tasks, including challenges and rewards. 
Figure 4 shows some rules to generate a mission structured 
similarly as the mission of the forest temple. Figure 5 shows 
sample output of the graph grammar. Note that this grammar 
includes two types of edges, represented by single arrows and 
double arrows; different types of edges is a feature that can be 
found in other graph grammars. In this case, the double edges 
indicate a tight coupling between the subordinate node and its 
super-ordinate: this means that the subordinate must be placed 
behind the superordinate in the generated space. It is specific to 
the implementation described in this paper. A normal edge 
represents a loose coupling and indicates the subordinate can be 
placed anywhere. This information is very important for the space 
generation algorithm (see section 6 below). 

5. SHAPE GRAMMAR TO GENERATE 
SPACE 
Shape grammars are most useful to generate space. Shape 
grammars have been around since the early 1970s after they were 
first described by George Stiny and James Gips [19]. Shape 
grammars shapes are replaced by new shapes following rewrite 
rules similar to those of generative grammar and graph grammar. 
Special markers are used to identify starting points and to help 
orientate (and sometimes scale) the new shapes.  

For example, imagine a shape grammar, which alphabet consists 
of   three   symbols:   ‘a  wall’,   ‘open   space’   and   a   ‘connection’   (see 
figure  6a).  In  this  grammar  only  the  ‘connection’  is  a  non-terminal 
symbol, which has a square marker with a triangle indicating its 
orientation. The grey marker on the right-hand side of a shape 
grammar rule as represented here, indicates where the original 
shape was and what its orientation was. We can design rules that 
determine that a connection can be replaced by a short piece of 
corridor, a T-fork or a wall, effectively closing the connection (see 
figure 6b). It should be apparent that the construction depicted in 
figure 6c is a possible output of these rules, provided that the start 
symbol was also a connection, and given that at every iteration a 
random connection was selected to be replaced. 

 

 
Figure 6. Shape grammar a) alphabet, b) rules and c) output 

 

 
Figure 7. Recursive shape rules and output 

Shape grammars, like any generative grammar can include 
recursion. Recursion is a good way to introduce more variation in 
the resulting shapes. For example, the rules in figure 7 are 
recursive and the shapes these rules produces will have a more 
natural (fractal) feel. In this case the implementation of the 
grammar should allow the right-hand side to be resized to match 
the size of the growing shape. 

6. GENERATING SPACE FROM MISSION 
In order to use a shape grammar to generate a space from a 
generated mission a few adjustments were made to the shape 
grammar. The terminal symbols in the mission need to function as 
building instructions for the shape grammar. To achieve this, each 
rule in the shape grammar was associated with a terminal symbol 
form in the mission grammar. The prototype that implements the 

 
Figure 5. A generated mission (from the rules in figure 4) 

Generated mission
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Shape grammars
Graph grammars are well suited to generate missions as missions 
are best expressed as nonlinear graphs. It would need an alphabet 
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symbol, which has a square marker with a triangle indicating its 
orientation. The grey marker on the right-hand side of a shape 
grammar rule as represented here, indicates where the original 
shape was and what its orientation was. We can design rules that 
determine that a connection can be replaced by a short piece of 
corridor, a T-fork or a wall, effectively closing the connection (see 
figure 6b). It should be apparent that the construction depicted in 
figure 6c is a possible output of these rules, provided that the start 
symbol was also a connection, and given that at every iteration a 
random connection was selected to be replaced. 
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Figure 7. Recursive shape rules and output 

Shape grammars, like any generative grammar can include 
recursion. Recursion is a good way to introduce more variation in 
the resulting shapes. For example, the rules in figure 7 are 
recursive and the shapes these rules produces will have a more 
natural (fractal) feel. In this case the implementation of the 
grammar should allow the right-hand side to be resized to match 
the size of the growing shape. 

6. GENERATING SPACE FROM MISSION 
In order to use a shape grammar to generate a space from a 
generated mission a few adjustments were made to the shape 
grammar. The terminal symbols in the mission need to function as 
building instructions for the shape grammar. To achieve this, each 
rule in the shape grammar was associated with a terminal symbol 
form in the mission grammar. The prototype that implements the 

 
Figure 5. A generated mission (from the rules in figure 4) 
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Shape grammars for 
level generation

shape grammar first finds the next symbol in the mission, looks 
for rules that implement that symbol, selects one at random based 
on their relative weight, then looks for possible locations where 
the rule could be applied, and finally selects one location 
randomly based on their relative fitness (one location might be 
more suitable than another). The algorithm stores a reference to 
the mission symbol for which each element was generated, 
allowing the algorithm to implement the tight coupling as dictated 
by the mission. This prevents the algorithm from placing keys and 
items at random locations instead of behind tests or locks as 
specified by the mission. The shape grammar is further extended 

with some dynamic parameters that influence the rule selection. 
These parameters are used to create progressive difficulty or to 
shift   between  different   ‘registers’.  For  example   the  grammar  can 
increase the chance of selecting rules with more difficult obstacles 
with every step, and switch from a register that causes it to build 
many traps to a register that causes it to include many monsters. 

In the test application supporting this research, rules can have 
commands associated with them. These commands are executed 
either before or after the application of a rule. These commands 

 
Figure 8. Shape grammar rules to generate missions 

 

 
Figure 9. Space generation using the rules from figure 8 and part of the mission from figure 5. 
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SpeedRock

Figure 5: Skinned rock using high chunkiness value.
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3D L-systems

specified by the user [4]. The most common way of using
L-systems for content generation and computational art is
to interpret strings generated by L-system rewriting as in-
structions for a turtle mechanism that draws in 2 or 3 di-
mensions [6]; in contrast, we are here using the 3D structure
resulting from rewriting directly as the “skeleton” for our
rocks.

Each chromosome with the evolutionary algorithm con-
sists of one axiom and four rules.

The SpeedRock chromosome is inspired by L-system gram-
mar, expanded to 3 dimensions. The actual representation
of the L-system rule is a 3 dimensional array of bytes, with
the size of each dimension being 2. This represents a cube
made up of 8 sub-cubes. Each byte value in a sub-cube holds
a value representing another rule, an empty space (rule 0),
or referencing itself.

For evolution to work well, the evolutionary algorithm
needs a large amount of variation within the population.
The population is therefore seeded with uniformly randomly
generated chromosomes.

2.1 3D L-systems
The algorithm we created works by starting with a 3D cu-

bic matrix as the L-system axiom, along with four randomly
generated rules. Figure 1 shows an example 3D Matrix Di-
vision rule set.

Figure 1: A sample ruleset for 3D Matrix division.
The results of a single expansion of a block of each
type (red, green, blue, yellow) is shown.

Figure 2: The results of two expansions of a red
block of the same rule set.

We then rewrite the 3D matrix six times. In each itera-

tion, each cube (cuboid) in the matrix is sub-divided along
their 3 axis into 8 smaller cuboids, reflecting the rule of the
parent cube. We call the approach of expanding the axiom
according to the ruleset “3D matrix division”. Figure 2 il-
lustrates two expansions of one of the sets shown in figure 1.
After each expansion, if a cuboid is set as “Rule 0”, it

is treated as a gap in the rock and invisible, in any other
case where the rule is non-zero it is treated as solid and
interpreted as rock during rendering.
During initial testing of this concept, we found the results

to be interesting, yet the variation in shapes was leaning
towards cubic or triangular structures. The results also in-
dicated that this technique may be suited for creating PGC
Buildings, perhaps some crystalline silicate rocks, and man-
made structures. See figure 3 for examples of structures
created through repeated expansions of random rulesets.

Figure 3: Some structures created through repeated
expansion of random rulesets.

2.2 Rock implosion
After the rewriting/expansion phase, SpeedRock applies

an “implosion” algorithm to the rock, forcing all cubes to
move towards the centre of the cube until no internal empty
space exists. Implosion works by repetitively searching through
the expanded 3 dimensional rock and upon finding an empty
space between a brick and the current center plane, pulling
the brick into the emprty space. The 3 center planes, one
for each dimension, run along the centre of the particular
dimension being operated on. This method is entirely de-
terministic.
See figure 4 for examples of structures created through

expansion of random rulesets followed by implosion. In the
eyes of the designers, the imploded structures look less man-
made than the correspinding unimploded structures.

2.3 Rock evolution
The variability of structures attained through the simple

expansion and implosion processes described here is quite
considerable, suggesting that the underlying representation
of four rules and an axiom is well suited for evolutionary
search. In SpeedRock, the user controls the generation chiefly
through specifying parameters for the fitness function.

Friday, September 27, 13



3D L-systems

specified by the user [4]. The most common way of using
L-systems for content generation and computational art is
to interpret strings generated by L-system rewriting as in-
structions for a turtle mechanism that draws in 2 or 3 di-
mensions [6]; in contrast, we are here using the 3D structure
resulting from rewriting directly as the “skeleton” for our
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a value representing another rule, an empty space (rule 0),
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needs a large amount of variation within the population.
The population is therefore seeded with uniformly randomly
generated chromosomes.

2.1 3D L-systems
The algorithm we created works by starting with a 3D cu-

bic matrix as the L-system axiom, along with four randomly
generated rules. Figure 1 shows an example 3D Matrix Di-
vision rule set.

Figure 1: A sample ruleset for 3D Matrix division.
The results of a single expansion of a block of each
type (red, green, blue, yellow) is shown.

Figure 2: The results of two expansions of a red
block of the same rule set.

We then rewrite the 3D matrix six times. In each itera-

tion, each cube (cuboid) in the matrix is sub-divided along
their 3 axis into 8 smaller cuboids, reflecting the rule of the
parent cube. We call the approach of expanding the axiom
according to the ruleset “3D matrix division”. Figure 2 il-
lustrates two expansions of one of the sets shown in figure 1.
After each expansion, if a cuboid is set as “Rule 0”, it

is treated as a gap in the rock and invisible, in any other
case where the rule is non-zero it is treated as solid and
interpreted as rock during rendering.
During initial testing of this concept, we found the results

to be interesting, yet the variation in shapes was leaning
towards cubic or triangular structures. The results also in-
dicated that this technique may be suited for creating PGC
Buildings, perhaps some crystalline silicate rocks, and man-
made structures. See figure 3 for examples of structures
created through repeated expansions of random rulesets.

Figure 3: Some structures created through repeated
expansion of random rulesets.

2.2 Rock implosion
After the rewriting/expansion phase, SpeedRock applies

an “implosion” algorithm to the rock, forcing all cubes to
move towards the centre of the cube until no internal empty
space exists. Implosion works by repetitively searching through
the expanded 3 dimensional rock and upon finding an empty
space between a brick and the current center plane, pulling
the brick into the emprty space. The 3 center planes, one
for each dimension, run along the centre of the particular
dimension being operated on. This method is entirely de-
terministic.
See figure 4 for examples of structures created through

expansion of random rulesets followed by implosion. In the
eyes of the designers, the imploded structures look less man-
made than the correspinding unimploded structures.

2.3 Rock evolution
The variability of structures attained through the simple

expansion and implosion processes described here is quite
considerable, suggesting that the underlying representation
of four rules and an axiom is well suited for evolutionary
search. In SpeedRock, the user controls the generation chiefly
through specifying parameters for the fitness function.
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Random ruleset 
expansion

specified by the user [4]. The most common way of using
L-systems for content generation and computational art is
to interpret strings generated by L-system rewriting as in-
structions for a turtle mechanism that draws in 2 or 3 di-
mensions [6]; in contrast, we are here using the 3D structure
resulting from rewriting directly as the “skeleton” for our
rocks.

Each chromosome with the evolutionary algorithm con-
sists of one axiom and four rules.

The SpeedRock chromosome is inspired by L-system gram-
mar, expanded to 3 dimensions. The actual representation
of the L-system rule is a 3 dimensional array of bytes, with
the size of each dimension being 2. This represents a cube
made up of 8 sub-cubes. Each byte value in a sub-cube holds
a value representing another rule, an empty space (rule 0),
or referencing itself.

For evolution to work well, the evolutionary algorithm
needs a large amount of variation within the population.
The population is therefore seeded with uniformly randomly
generated chromosomes.

2.1 3D L-systems
The algorithm we created works by starting with a 3D cu-

bic matrix as the L-system axiom, along with four randomly
generated rules. Figure 1 shows an example 3D Matrix Di-
vision rule set.

Figure 1: A sample ruleset for 3D Matrix division.
The results of a single expansion of a block of each
type (red, green, blue, yellow) is shown.

Figure 2: The results of two expansions of a red
block of the same rule set.

We then rewrite the 3D matrix six times. In each itera-

tion, each cube (cuboid) in the matrix is sub-divided along
their 3 axis into 8 smaller cuboids, reflecting the rule of the
parent cube. We call the approach of expanding the axiom
according to the ruleset “3D matrix division”. Figure 2 il-
lustrates two expansions of one of the sets shown in figure 1.
After each expansion, if a cuboid is set as “Rule 0”, it

is treated as a gap in the rock and invisible, in any other
case where the rule is non-zero it is treated as solid and
interpreted as rock during rendering.
During initial testing of this concept, we found the results

to be interesting, yet the variation in shapes was leaning
towards cubic or triangular structures. The results also in-
dicated that this technique may be suited for creating PGC
Buildings, perhaps some crystalline silicate rocks, and man-
made structures. See figure 3 for examples of structures
created through repeated expansions of random rulesets.

Figure 3: Some structures created through repeated
expansion of random rulesets.

2.2 Rock implosion
After the rewriting/expansion phase, SpeedRock applies

an “implosion” algorithm to the rock, forcing all cubes to
move towards the centre of the cube until no internal empty
space exists. Implosion works by repetitively searching through
the expanded 3 dimensional rock and upon finding an empty
space between a brick and the current center plane, pulling
the brick into the emprty space. The 3 center planes, one
for each dimension, run along the centre of the particular
dimension being operated on. This method is entirely de-
terministic.
See figure 4 for examples of structures created through

expansion of random rulesets followed by implosion. In the
eyes of the designers, the imploded structures look less man-
made than the correspinding unimploded structures.

2.3 Rock evolution
The variability of structures attained through the simple

expansion and implosion processes described here is quite
considerable, suggesting that the underlying representation
of four rules and an axiom is well suited for evolutionary
search. In SpeedRock, the user controls the generation chiefly
through specifying parameters for the fitness function.
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SpeedRock
• 3D L-system subdivision

• Implosion

• Erosion

• Vacuum sealing

• Optimization by evolutionary computation

• Dart, De Rossi, Togelius, FDG workshop on 
PCG 2011
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A taxonomy of PCG
• Online/Offline

• Necessary/Optional

• Random seeds/Parameter vectors

• Stochastic/Deterministic

• Constructive/Generate-and-test

Friday, September 27, 13



Issues in
search-based PCG

• Content representation and search space

• Direct or indirect?

• Fitness function

• Direct, simulation-based, interactive?
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Backus Naur Form

• G = {N,T,P,S}

• T: terminals

• N: non-terminals

• P: production rules

• S: start symbol
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Example
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Example
• genotype = (4,5,8,11)

• 4%3 = 1 -> second production

• <exp> ::= <exp><op><exp>

• 5%3 = 2 -> third production

• <exp> ::=<var> ::= X

• 8%4 = 0 -> first production

• <op> ::= +

• ...
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Design grammar in 
Super Mario Bros

• Level = list of chunks

• chunk = gap, hill, platform, enemy, box, ...

• each chunk has a set of properties
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Level generation

• Place the chunks in the level map according 
to the grammar

• constraints the chunks’ properties so that 
the final level is playable
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Design grammar
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Lab exercise
• Implement a bracketed L-system + turtle 

graphics program that draws a simple plant

• Arbitrary n (number of rewrites)

• Axiom: F

• Grammar: F>F[-F]F[+F][F]

• Turning angle: 30º

• Tip: implement rewriting first, then graphics 
interpretation!
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