
Lecture 3:
Constructive 

Generation Methods for 
Dungeons and Levels

Procedural Content Generation, Autumn 2013

Noor Shaker and Antonios Liapis

Thursday, September 12, 13



What makes
a good level?

Thursday, September 12, 13



• Long?

• Unpredictable?

• Branching?

• Even level of challenge?

• Affords different playing styles?

• Beautiful?

• Realistic?

• Balanced?

Thursday, September 12, 13



How could we 
generate levels with 
these properties?

Thursday, September 12, 13



Simple Roguelike 
dungeon generation 

algorithms

Thursday, September 12, 13



Binary space partitioning
• choose a random direction : horizontal or 

vertical splitting

• choose a random position (x for vertical, y 
for horizontal)

• split the dungeon into two sub-dungeons

• call the same procedure for each sub-
dungeon until finished

• Finally, create a room in each leaf and 
connect siblings

Thursday, September 12, 13



Binary space partitioning

Thursday, September 12, 13



Binary space partitioning

Thursday, September 12, 13



Binary space partitioning

After 4 splitting
Thursday, September 12, 13



Binary space partitioning

Creating the rooms

Thursday, September 12, 13



Binary space partitioning

Adding level-1 corridors
Thursday, September 12, 13



Binary space partitioning

Level-2 corridors
Thursday, September 12, 13



Binary space partitioning

The complete dungeon

Thursday, September 12, 13



Procedure

Thursday, September 12, 13



Bros vs cons

• Bros:

• easy to implement

• no overlapping rooms or corridors

• easy to create group of rooms

• Cons

• very neat

Thursday, September 12, 13



Thursday, September 12, 13



Agent-based methods

• Less predictable

• Less organized

Thursday, September 12, 13



A highly stochastic 
method

Thursday, September 12, 13



Thursday, September 12, 13



Thursday, September 12, 13



Thursday, September 12, 13



Thursday, September 12, 13



Thursday, September 12, 13



Thursday, September 12, 13



Thursday, September 12, 13



Thursday, September 12, 13



Thursday, September 12, 13



Less stochastic method

• Use look ahead to avoid overlaps

• Make few changes in the direction

Thursday, September 12, 13



Procedure

Thursday, September 12, 13



Less stochastic method

Thursday, September 12, 13



Less stochastic method

Thursday, September 12, 13



Cellular automata

• Computational paradigm based on local 
interaction 

• Used in artificial life and complexity studies

• The value of each cell in iteration n+1 is 
based on the value of neighbouring cells in 
iteration n and some rule

Thursday, September 12, 13



2D cellular automata

Thursday, September 12, 13



Cellular automata for 
real-time generation of 

infinite cave levels
Lawrence Johnson, Georgios Yannakakis and Julian Togelius

FDG PCG Workshop 2010

Thursday, September 12, 13



This...

• A CA-based algorithm for generating 
infinite 2D caves

• simple

• realtime

• looks good

• somewhat controllable

Thursday, September 12, 13



The motivation

• Cave Crawler: a cooperative abusive dungeon 
crawler

• Never ends - therefore needs to produce 
infinite caves...

Thursday, September 12, 13



CA cave generation
• Start with a square grid (e.g. 50*50) - all 

floor

• Randomly switch a proportion of cells from 
floor to rock

• Run a CA n times, where each cell is set to:
rock: if at least T neighbours are rock
floor: otherwise

• Fill in the interior of rock formations

Thursday, September 12, 13



Core CA mechanic

Thursday, September 12, 13



Parameters

• r: initial proportion of rock cells (0.5)

• n: CA iterations (4)

• T: neighbourhood value threshold that 
defines a rock (5)

• M: Moore neighbourhood size (1)

Thursday, September 12, 13



(a) Random map (b) CA map

Figure 1: Comparison between a CA and a ran-

domly generated map (r = 0.5 in both maps); CA

parameters: n = 4, M = 1, T = 5. Rock and wall cells

are represented by red and white color respectively.

Colored areas represent di↵erent tunnels (floor clus-

ters).

size. Given that the operation is performed on all the cells
of the grid the computational e↵ort equals n(wh(2M +1)2),
where w and h are the width and height of the grid, respec-
tively and n is the number of CA iterations.

All experiments presented in this paper were run on a lap-
top with Windows 7, Intel Pentium M processor 1.73 GHz,
1.50 GB ram. The game and algorithms are implemented in
C# using the XNA framework. While CPU time fits our re-
quirements at this stage, other performance measures could
be considered in future studies including the likeliness of the
generated tunnels which could be expressed as a level of wall
roughness/smoothness.

Random cave maps are generated in 1.4·10�4 milliseconds
(average value out of 10 runs) while the CA-based algorithm
generates the map in 4.1 ·10�1 milliseconds on average mak-
ing both very e�cient for realtime PCG.

6. EVALUATION
Figure 1 shows a randomly generated level (equivalent to

the base step of the CA-based algorithm) next to a level
generated the CA-based algorithm. It is apparent that CA
generate playable, good-looking maps at a very low compu-
tational cost, whereas purely random generation does not.
Such an outcome provides the first indication of the e�-
ciency and appropriateness of the algorithm for real-time
map generation.

Figure 2 depicts di↵erent runs of the CA algorithm with
respect to the number of iterations (n), Moore distance sizes
(M) and neighborhood value threshold (T ) that defines a
rock. It can be seen that the algorithm converges quickly
to cave-like layouts, the smoothness of which can be varied
via the M parameter. The T parameter can have a great
impact on the initial (n = 1) ratio of rock over floor cells
and it is up to the designer to adjust accordingly.

Figure 3 depicts a 3⇥3 map generated with the proposed
algorithm. This map was built in only 349 ms indicating the
appropriateness of the CA algorithm for realtime PCG. It
is also clear that well-shaped and smooth tunnels are gen-
erated very quickly using the CA base-grid interconnection
algorithm described in section 3.3.

7. DISCUSSION AND CONCLUSION

Figure 3: A 3⇥ 3 base grid map generated with CA.

Rock and wall cells are represented by red and white

color respectively. Grey areas represent floor. (M =
2;T = 13;n = 4; r = 50%)

This paper presents a self-organization approach, via iter-
ative cellular automata, for generating infinite 2D cave-maps
in realtime. Evaluation of the algorithm in the Cave Crawler
game level editor shows the computational e�ciency of the
approach in generating playable tunnels and the variation a
level designer has access to by adjusting content parameters.
The main reason for using 2D grids instead of 3D cubes

to generate the cave map of the game is that it is easier
the keep the floor level this way, which makes connectivity
testing much more tractable. The obvious next step is to
generate 3D maps based on the 2D cave terrains created
by the algorithm proposed here. In order to create a 3D
world, one can project the tunnels generated along the y
axis. Mid-point displacement algorithms such as diamond
square or scatter noise could be then used to generate the
walls of the tunnels. Alternatively, a designer could investi-
gate the e�ciency of 3D cellular automata for creating 3D
maps directly, relying on cubic Moore neighborhoods.

8. REFERENCES
[1] T. Adams. Re: Optimization-based versus

“constructive” pcg (post to the “procedural content
generation” google group).

[2] F. Belhadj. Terrain modeling: a constrained fractal
model. In 5th International conference on CG, virtual
reality, visualisation and interaction in Africa, pages
197–204. ACM, 2007.

[3] J. Doran and I. Parberry. Controlled Procedural
Terrain Generation Using Software Agents. IEEE
Transactions on Computational Intelligence and AI in
Games, 2010. to appear.

[4] D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and
S. Worley. Texturing and Modeling: A Procedural
Approach. Morgan Kaufmann, 3rd edition edition,
2003.

[5] T. Forsyth. Game Programming Gems 3, chapter
Cellular Automata for Physical Modelling. Charles
River Media, Inc., 2002.

[6] M. Frade, F. F. de Vega, and C. Cotta. Evolution of
artificial terrains for video games based on

Thursday, September 12, 13



Adjacent rooms
• The infinite cave needs to be contiguous - 

and you need to be able to turn back!
(Visited rooms stored as random seeds)

• Generate all four neighbours of a new 
room

• Dig tunnels from the central room to the 
new rooms at the shortest points

• Run the CA m times (2) on all five rooms 
together to smooth out edges

Thursday, September 12, 13



(a) Random map (b) CA map

Figure 1: Comparison between a CA and a ran-

domly generated map (r = 0.5 in both maps); CA

parameters: n = 4, M = 1, T = 5. Rock and wall cells

are represented by red and white color respectively.

Colored areas represent di↵erent tunnels (floor clus-

ters).

size. Given that the operation is performed on all the cells
of the grid the computational e↵ort equals n(wh(2M +1)2),
where w and h are the width and height of the grid, respec-
tively and n is the number of CA iterations.

All experiments presented in this paper were run on a lap-
top with Windows 7, Intel Pentium M processor 1.73 GHz,
1.50 GB ram. The game and algorithms are implemented in
C# using the XNA framework. While CPU time fits our re-
quirements at this stage, other performance measures could
be considered in future studies including the likeliness of the
generated tunnels which could be expressed as a level of wall
roughness/smoothness.

Random cave maps are generated in 1.4·10�4 milliseconds
(average value out of 10 runs) while the CA-based algorithm
generates the map in 4.1 ·10�1 milliseconds on average mak-
ing both very e�cient for realtime PCG.

6. EVALUATION
Figure 1 shows a randomly generated level (equivalent to

the base step of the CA-based algorithm) next to a level
generated the CA-based algorithm. It is apparent that CA
generate playable, good-looking maps at a very low compu-
tational cost, whereas purely random generation does not.
Such an outcome provides the first indication of the e�-
ciency and appropriateness of the algorithm for real-time
map generation.

Figure 2 depicts di↵erent runs of the CA algorithm with
respect to the number of iterations (n), Moore distance sizes
(M) and neighborhood value threshold (T ) that defines a
rock. It can be seen that the algorithm converges quickly
to cave-like layouts, the smoothness of which can be varied
via the M parameter. The T parameter can have a great
impact on the initial (n = 1) ratio of rock over floor cells
and it is up to the designer to adjust accordingly.

Figure 3 depicts a 3⇥3 map generated with the proposed
algorithm. This map was built in only 349 ms indicating the
appropriateness of the CA algorithm for realtime PCG. It
is also clear that well-shaped and smooth tunnels are gen-
erated very quickly using the CA base-grid interconnection
algorithm described in section 3.3.

7. DISCUSSION AND CONCLUSION

Figure 3: A 3⇥ 3 base grid map generated with CA.

Rock and wall cells are represented by red and white

color respectively. Grey areas represent floor. (M =
2;T = 13;n = 4; r = 50%)

This paper presents a self-organization approach, via iter-
ative cellular automata, for generating infinite 2D cave-maps
in realtime. Evaluation of the algorithm in the Cave Crawler
game level editor shows the computational e�ciency of the
approach in generating playable tunnels and the variation a
level designer has access to by adjusting content parameters.
The main reason for using 2D grids instead of 3D cubes

to generate the cave map of the game is that it is easier
the keep the floor level this way, which makes connectivity
testing much more tractable. The obvious next step is to
generate 3D maps based on the 2D cave terrains created
by the algorithm proposed here. In order to create a 3D
world, one can project the tunnels generated along the y
axis. Mid-point displacement algorithms such as diamond
square or scatter noise could be then used to generate the
walls of the tunnels. Alternatively, a designer could investi-
gate the e�ciency of 3D cellular automata for creating 3D
maps directly, relying on cubic Moore neighborhoods.

8. REFERENCES
[1] T. Adams. Re: Optimization-based versus

“constructive” pcg (post to the “procedural content
generation” google group).

[2] F. Belhadj. Terrain modeling: a constrained fractal
model. In 5th International conference on CG, virtual
reality, visualisation and interaction in Africa, pages
197–204. ACM, 2007.

[3] J. Doran and I. Parberry. Controlled Procedural
Terrain Generation Using Software Agents. IEEE
Transactions on Computational Intelligence and AI in
Games, 2010. to appear.

[4] D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and
S. Worley. Texturing and Modeling: A Procedural
Approach. Morgan Kaufmann, 3rd edition edition,
2003.

[5] T. Forsyth. Game Programming Gems 3, chapter
Cellular Automata for Physical Modelling. Charles
River Media, Inc., 2002.

[6] M. Frade, F. F. de Vega, and C. Cotta. Evolution of
artificial terrains for video games based on

Thursday, September 12, 13



Controllable?

Parameters can be varied,
but what do they mean?

Thursday, September 12, 13



(a) n = 1, M = 1, T = 5 (b) n = 2, M = 1, T = 5 (c) n = 3, M = 1, T = 5 (d) n = 4, M = 1, T = 5

(e) n = 1, M = 2, T = 13 (f) n = 2, M = 2, T = 13 (g) n = 3, M = 2, T = 13 (h) n = 4, M = 2, T = 13

(i) n = 1, M = 1, T = 2 (j) n = 1, M = 1, T = 4 (k) n = 1, M = 1, T = 6 (l) n = 1, M = 1, T = 8

Figure 2: Map evolution over CA iterations (n), Moore distances (M) and rock threshold values (T ). The

initial percentage of rock cells is 50% in all figures.

accessibility. In Proceedings of EvoApplications 2010,
volume 6024, LNCS, pages 90–99, Istanbul, 2010.
Springer.

[7] T. W. Malone. What makes computer games fun?
Byte, 6:258–277, 1981.

[8] J. Olsen. Realtime procedural terrain generation.
Technical report, Oddlabs, 2004.

[9] N. Sorenson and P. Pasquier. Towards a generic
framework for automated video game level creation. In
Proceedings of EvoApplications 2010, volume 6024,
LNCS, pages 130–139, Istanbul, 2010. Springer.

[10] P. Sweetser and J. Wiles. Combining influence maps
and cellular automata for reactive game agents. In
Intelligent Data Engineering and Automated Learning
— IDEAL 2005, volume LNCS 3578, pages 524–531.
Springer Berlin / Heidelberg, 2005.

[11] P. Sweetser and J. Wiles. Scripting versus emergence:
issues for game developers and players in game
environment design. International Journal of

Intelligent Games and Simulations, 4(1):1–9, 2005.
[12] J. Togelius, G. N. Yannakakis, K. O. Stanley, and

C. Browne. Search-based procedural content
generation. In Proceedings of EvoApplications 2010,
volume 6024, LNCS, pages 140–149, Istanbul, 2010.
Springer.

Thursday, September 12, 13



Spelunky

• Roguelike-like platformer

• Combines the fast pace of the platformer 
with the replayability and unpredictability of 
the roguelike

Thursday, September 12, 13



Spelunky level generation

Each level is divided into a grid of 16 rooms.

Thursday, September 12, 13



Spelunky level generation

A path is drawn from entrance at the top
to exit at the bottom.

Thursday, September 12, 13



Spelunky level generation

Each room is selected from a set of templates,
so as to fit in the path drawn in the previous step

(and also with the position in the level).

Thursday, September 12, 13



Spelunky level generation

Randomised chunks in each room add variation.

Thursday, September 12, 13



Spelunky level generation

Finally, critters, traps, treasures etc are added.

Thursday, September 12, 13



Spelunky level generation

Thursday, September 12, 13



The 2010 Mario AI 
Championship:Level 
Generation Track

Noor Shaker, Julian Togelius, Georgios N. Yannakakis, 
Ben Weber, Tomoyuki Shimizu, Tomonori Hashiyama, 

Nathan Sorenson, Philippe Pasquier, Peter Mawhorter, 
Glen Takahashi, Gillian Smith and Robin Baumgarten

IEEE TCIAIG, December 2011

Thursday, September 12, 13



Infinite Mario Bros

• Open-source Java clone of Super Mario 
Bros (1? 3?)

• Developed by Notch (!)

• Infinite level generation - but levels are 
quite simple

• Developed into the Mario AI Benchmark

Thursday, September 12, 13



Previous work:
player level preferences
• Neuroevolutionary 

preference learning

• Player experience 
model 73-92%

Player	
  Experience
(fun,	
  frustra4on,	
  anxiety,	
  …)

Level	
  features	
  and	
  rules,	
  playing	
  behavior

C.	
  Pedersen,	
  J.	
  Togelius,	
  G.	
  N.	
  Yannakakis.,	
  Modeling	
  Player	
  Experience	
  for	
  
Content	
  Crea5on	
  IEEE	
  TCIAG,	
  2010

Thursday, September 12, 13

http://www.bluenight.dk/mario.php
http://www.bluenight.dk/mario.php


The Mario AI 
Championship

• Based on different versions of the Mario AI 
Benchmark

• Gameplay track: controllers that play as 
well as possible

• Learning track: controllers that learn to 
play particular levels

• Turing track: controllers that play in a 
human-like manner

• Level generation track: level generators
Thursday, September 12, 13



Level generation track 
2010

• Six entries from three continents

• Each judge played a test level, and two 
levels generated by different generators, 
and then indicated a preference

• Generators were provided with 
information on how the judge played on 
the test level, to allow adaptation

Thursday, September 12, 13



Ben Weber

• “Probabilistic multi-pass 
generator” (ProMP)

• A number of passes from left to right

• Adds a new feature every pass

• No adaptation

Thursday, September 12, 13



Ben Weber
6

Fig. 1. Passes applied by Ben Weber’s ProMP generator:(1) ground, (2) hills, (3) pipes, (4) enemies, (5) blocks, and (6) coins.

Fig. 2. This figure shows the overall architecture of the Tomoyuki
Shimizu and Tomonori Hashiyama’s level generator. The Parts collector runs
offline using interactive evolutionary computation. The Skill and preference
estimator derive players’ characteristics. Based on the outputs of these
modules, the parts connecter arranges the corresponding parts sequentially.

randomly at initialization, and their difficulty and features
are evaluated by the designer (collector). The difficulty of
these parts is classified into five degrees. Features of these
parts are classified into three categories depending on their
number of 1) coins, 2) blocks and 3) enemies. Five degrees of
difficulty and three categories of features correspond to those

of players’ skills and players’ preferences, respectively. The
parts used in this competition were evolved by us in advance
and saved into the parts pool.

The parts connecter is a module which generates a level as
serial connection of evolved parts. Some parts which match
best to the player’s skill and preferences as derived from
skill and preference estimator are selected as candidates.
This module connects these candidates from left to right
horizontally.

3) Adaptation: Our level generator estimates players’
skills and preferences through a skill and preference estima-
tor. Those parts which match the player’s skill and preference
best are selected and connected with a level by the parts
connecter.

At first, this module selects some candidate parts whose
difficulty matches the player’s skill. These parts are then
examined for whether they match the player’s preference.
The selected parts are connected sequentially the level, grow-
ing it from left to right. This selection-connection procedure
is repeated until the length of generated level meets the
requirement of the competition.

4) Creative Control: The designer can control the genera-
tor in at least two important ways. The estimation of players’
skills and preferences is done through human-authored rules,
based on our domain knowledge. Also, the parts are evolved
using IEC, and their difficulty and features evaluated by
human designers.

5) Strengths and Weaknesses: Our approach has two
main advantages. 1) We generate levels that correspond to
players’ skills and preferences. 2) Designers can affect the
composition of levels directly through IEC. No formula needs
to be derived for the fitness function of the evolutionary
algorithm, because the level parts are evaluated by designers

Thursday, September 12, 13



Ben Weber

• Playability?

Thursday, September 12, 13



This lab

• Get to know the Mario AI framework, 
especially the level generation version

• Build a simple level generator (re-
implement any of the described, or do your 
own thing)

• Think about the strengths and weaknesses 
of your generator

Thursday, September 12, 13



Have you thought 
about the course 

project yet?

Thursday, September 12, 13


