
Lecture 5:
Landscapes, Noise, 

Fractals, Agents
Procedural Content Generation, Autumn 2013

Noor Shaker, Julian Togelius and Mark Nelson

Thursday, September 19, 13



Thursday, September 19, 13



Thursday, September 19, 13



Maps and Landscapes: 
where and why?

• In a strategy game, to move units on

• In a flight simulator, to fly over

• In most first person games, to move in

• In any game, as a backdrop

Thursday, September 19, 13



Features of landscapes

• Heightmap

• Passable/impassable areas

• Points of interest (e.g. items, base locations, 
spawn points)

• ...other features possible

Thursday, September 19, 13



Example: flight sim

Thursday, September 19, 13



Example: StarCraft

Thursday, September 19, 13



Example: Halo Reach

Thursday, September 19, 13



Heightmap 
representation

• Essentially a 2D grid with height values in 
cells

Thursday, September 19, 13



Cloudy skies, plasma...

Thursday, September 19, 13



Fractal methods

• Based on self-similarity

• Did you know that all coastlines are of 
infinite length?

Thursday, September 19, 13



Midpoint displacement
• 2D algorithm - creates “silhouettes” 

through offsetting a line

• At each iteration, find the midpoint 
between two points on a line, and raise or 
lower this point a random amount

• parameter H: factor by which random 
number range is multiplied each iteration

• This results in two new lines; do the same 
for these lines (using range * H), etc.

Thursday, September 19, 13



Midpoint displacement

Thursday, September 19, 13



Midpoint displacement

Thursday, September 19, 13



Diamond-Square

• Extension of midpoint displacement into 
three dimensions

• Offsets the midpoints of squares rather 
than lines

• Two steps for each iteration:

• Diamond step: squares horizontal

• Square step: squares turned 45 degrees

Thursday, September 19, 13



Diamond-Square

Thursday, September 19, 13



Thursday, September 19, 13



Recursive 
implementation

diamondsquare (square) {
midpoint = diamond (square);
for all 4 edges {

edge midpoint = square (edge);
}
randrange *= H;
for all 4 resulting squares {

diamondsquare (new square);
}

}

Thursday, September 19, 13



Wraparound?

Thursday, September 19, 13



Perlin Noise
• A function for generating noise in n 

dimensions

• Scale-free

• Very widely used in all computer graphics, 
including in games and movies

• Combinations of Noise() with itself and 
with other operators can give interesting 
results - see paper

• Ken Perlin received an Oscar for it! 

Thursday, September 19, 13



Perlin Noise: basic idea
• Assign random gradient vectors to cells in a 

matrix (using standard random number 
generators)

• These gradients determine the height

• For values “between the cells” (non-integer 
coordinates): interpolate

• Repeat at higher resolutions (“octaves”) 
and lower amplitudes

• Just like diamond-square
Thursday, September 19, 13



Perlin Noise in 2D

• Create a 2D grid with a randomly chosen 
2D vector associated with each cell

• e.g., [0, 0] is associated with the vector 
[0.4, 0.3] and [0, 1] is associated with 
[0.1, 0.7] etc.

• Smoothly interpolate (using e.g. cubic 
interpolation) a surface that corresponds 
to the vectors

Thursday, September 19, 13



Thursday, September 19, 13



A taxonomy of PCG
• Online/Offline

• Necessary/Optional

• Random seeds/Parameter vectors

• Stochastic/Deterministic

• Constructive/Generate-and-test

Thursday, September 19, 13



PCG > randomness
In general,

Thursday, September 19, 13



Agent-based methods

• Use a number of “artificial agents” that 
construct the landscape by acting on it

• Agents of different types do different jobs

• Could be more controllable than diamond-
square

• Could give rise to different types of 
landscapes

Thursday, September 19, 13



Controlled Procedural 
Terrain Generation 

Using Software Agents
Jonathon Doran and Ian Parberry

Published in IEEE TCIAIG, 2010

Thursday, September 19, 13



D&P’s five agent types

• Coastline agents

• Smoothing agents

• Beach agents

• Mountain agents

• River agents

Thursday, September 19, 13



Rules for agents

• Each agent has a set number of “tokens” to 
spend on actions

• Each agent is allowed to see the current 
elevation around it, and allowed to modify 
it

• Agents don’t interact directly

Thursday, September 19, 13



In the beginning...

...there was a vast ocean.

Then came the first coastline agent.

Thursday, September 19, 13



Coastline agents
• Multiply until they cover the whole coast 

• Move out to position themselves right at 
the border of land and sea

• Generate a repulsor and an attractor point

• Score all neighbouring points according to 
distance to repulsor and attractor points

• Move to the best-scoring points, adding 
land as they go along

Thursday, September 19, 13



Figure 1: Coastlines produced by coastline agents with (left to right) small, medium and large
action sizes

Coastline-Generate(agent)
1 if tokens(agent) � limit
2 then
3 create 2 child agents
4 for each child
5 do
6 child ⇥ a random seed point on parent’s border
7 child ⇥ 1/2 of the parent’s tokens
8 child ⇥ a random direction
9 Coastline-Generate(child)

10 else
11 for each token
12 do
13 point ⇥ random border point
14 for each point p adjacent to point
15 do
16 score p
17 fill in the point with the highest score

3.2 Smoothing Agents

Smoothing agents make random walks around the map adjusting the height of an arbitrary point
p to be the average of points in an extended von Neumann neighborhood of p consisting of the
four orthogonal map points surrounding p on the elevation grid and the four points beyond these
(see Wolfram [29]). A weighted average height is calculated, with the center point given 3 times
the weight of the other points. Therefore nine points with a total weight of eleven are used. This
provides some inertia to prevent elevations from rapidly changing. We believe that the extended
neighborhood is responsible for the emergence of “interesting” curved features on the map. Use of
an 8-cell Moore neighborhood resulted in less “interesting” results.

Each smoothing agent returns to its point of origin periodically. This encourages smoothing

6

Thursday, September 19, 13



Coastline agents

Figure 1: Coastlines produced by coastline agents with (left to right) small, medium and large
action sizes

Coastline-Generate(agent)
1 if tokens(agent) � limit
2 then
3 create 2 child agents
4 for each child
5 do
6 child ⇥ a random seed point on parent’s border
7 child ⇥ 1/2 of the parent’s tokens
8 child ⇥ a random direction
9 Coastline-Generate(child)

10 else
11 for each token
12 do
13 point ⇥ random border point
14 for each point p adjacent to point
15 do
16 score p
17 fill in the point with the highest score

3.2 Smoothing Agents

Smoothing agents make random walks around the map adjusting the height of an arbitrary point
p to be the average of points in an extended von Neumann neighborhood of p consisting of the
four orthogonal map points surrounding p on the elevation grid and the four points beyond these
(see Wolfram [29]). A weighted average height is calculated, with the center point given 3 times
the weight of the other points. Therefore nine points with a total weight of eleven are used. This
provides some inertia to prevent elevations from rapidly changing. We believe that the extended
neighborhood is responsible for the emergence of “interesting” curved features on the map. Use of
an 8-cell Moore neighborhood resulted in less “interesting” results.

Each smoothing agent returns to its point of origin periodically. This encourages smoothing

6

Varying action sizes

Thursday, September 19, 13



Smoothing agents

• Take random walks on 
the map

• Change the elevation of 
each visited point to 
(almost) the mean of its 
extended von Neumann 
neighbourhood

Thursday, September 19, 13



Smoothing agents
agents to operate in a local area, which is useful when certain features of the map need more
smoothing than others.

The only configurable parameter for smoothing agents is the number of times that the agent
will return to its start point. Setting this number to a large value causes the agent to spend most
of its time near the start point. This provides a great deal of smoothing for that area, rather than
less smoothing spread over a larger area in the case where the agent is allowed to wander further
away.

Smooth(starting-point)
1 location� starting-point
2 for each token
3 do
4 heightlocation � weighted average of neighborhood
5 location� random neighboring point

3.3 Beach Agents

Beach agents create flat sandy areas next to the main coastline after the coastline agents have
finished. Before they begin, points on the main coastline are identified using breadth-first search.
Beach agents then use these points to place themselves on the coastline. They then perform random
walks flattening areas of beach, following the shoreline. Beach agents adjust the height of the beach
to allow random fluctuations in elevation so the beach is not a uniform flat space. After moving
to a spot on the coastline, the agent will lower the nearby points and jump inland to perform a
random walk. This creates variable sized sandy areas that can extend a short distance from the
water. After the random walk is complete, the agent returns to the coastline and continues to walk
along the shore. If an agent becomes stuck (for example running into a mountain range) and is
unable to continue its walk, it moves to another randomly chosen point on the main coastline and
continues. Beach agents avoid high areas, so any mountains that are next to the ocean are left
alone.

One of the more important parameters for the beach agent is the altitude limit, above which
the agent abandons an area and moves elsewhere. When the altitude limit is low, the raised area
near the middle of the beach is allowed to remain. When the altitude limit is high, the agent is
able to continue its work in this area and flattens the mound.

Beach agents set the height of the beach to random values within a specified range specified by
the designer. When this range is narrow, flat beaches are created. When it is raised a bit we see
more bumps. The designer can also control the width of a beach by indicating how far inland the
beach agents should begin flattening, and how long their random walk should be. Figure 2 shows
the e�ects of varying the width of a beach.

7

Thursday, September 19, 13



Beach agents

• Select random position along the coast, 
where coast is not too steep

• Flatten an area around this point (leaving 
small variations)

• Move randomly a short direction away 
from the coast, flattening the area

Thursday, September 19, 13



Beach agentsFigure 2: Beaches produced by beach agents with (left to right) small, medium, and large beach
width.

Beach-Generate(starting-point)
1 location⇥ starting-point
2 for each token
3 do
4 if heightlocation � limit
5 then
6 location⇥ random shoreline point
7 flatten area around location
8 smooth area around location
9 inland⇥ random point a short distance inland from location

10 for i⇥ 0 to size(walk)
11 do
12 flatten area around inland
13 smooth area around inland
14 inland⇥ random neighboring point
15 location⇥ random neighboring point of location

3.4 Mountain Agents

Mountain agents raise mountain ranges. Each starts at a random point on land and selects a
preferred direction of travel. As a mountain agent moves in this direction it raises an inverted V
shaped wedge of points with the center line becoming the ridge line. The agent will move along
this ridge and will periodically decide to change direction within a 90 degree cone from its original
direction. The e�ect is that the agent zig-zags but heads generally in the same direction. If an
agent runs into the ocean or the map edge, it changes direction to avoid this obstacle.

The width of the V-shaped wedge determines the general width of the mountains, and to a large
degree the slope of the mountain sides. The rate at which the slope drops in elevation is randomly
determined for each wedge (within a designer-specified range), which produces some interesting
features on the sides of the mountains. Mountain agents also periodically create foothills running
perpendicular to the mountain range axis. Smoothing is performed on the mountain after the
wedge is raised, blending the heights and leaving gentler transitions between nearby points.

Prior terrain generators have used other techniques for creating mountains, such as fault gen-
eration [10, 23], fractal midpoint displacement [24], and point deposition [2, 15, 25]. While we

8

Thursday, September 19, 13



Beach agents

Varying beach width

Figure 2: Beaches produced by beach agents with (left to right) small, medium, and large beach
width.

Beach-Generate(starting-point)
1 location⇥ starting-point
2 for each token
3 do
4 if heightlocation � limit
5 then
6 location⇥ random shoreline point
7 flatten area around location
8 smooth area around location
9 inland⇥ random point a short distance inland from location

10 for i⇥ 0 to size(walk)
11 do
12 flatten area around inland
13 smooth area around inland
14 inland⇥ random neighboring point
15 location⇥ random neighboring point of location

3.4 Mountain Agents

Mountain agents raise mountain ranges. Each starts at a random point on land and selects a
preferred direction of travel. As a mountain agent moves in this direction it raises an inverted V
shaped wedge of points with the center line becoming the ridge line. The agent will move along
this ridge and will periodically decide to change direction within a 90 degree cone from its original
direction. The e�ect is that the agent zig-zags but heads generally in the same direction. If an
agent runs into the ocean or the map edge, it changes direction to avoid this obstacle.

The width of the V-shaped wedge determines the general width of the mountains, and to a large
degree the slope of the mountain sides. The rate at which the slope drops in elevation is randomly
determined for each wedge (within a designer-specified range), which produces some interesting
features on the sides of the mountains. Mountain agents also periodically create foothills running
perpendicular to the mountain range axis. Smoothing is performed on the mountain after the
wedge is raised, blending the heights and leaving gentler transitions between nearby points.

Prior terrain generators have used other techniques for creating mountains, such as fault gen-
eration [10, 23], fractal midpoint displacement [24], and point deposition [2, 15, 25]. While we

8

Thursday, September 19, 13



Mountain agents
• Start at random positions and directions

• Move forward, continuously elevating a 
wedge, creating a ridge

• Turn randomly within 45 degrees from the 
initial course

• Periodically offshoot “foothills” 
perpendicular to movement direction

Thursday, September 19, 13



Mountain agents
Figure 4: Hill agents produce hills, similar to the way mountain agents produce mountains.

Mountain-Generate(startingpoint)
1 location⇥ starting-point
2 direction⇥ random direction
3 for each token
4 do
5 elevate wedge perpendicular to direction
6 smooth area around location
7 location⇥ next point in direction
8 every n-th token
9 do

10 direction⇥ original-direction ± 45-degrees

3.5 Hill Agents

Hill agents are a special case of the mountain agent. As with a mountain agent, the designer
specifies the number of tokens assigned to each hill agent, indirectly determining the size of each
hill. Hill agents generally create very short mountain ranges with a lower altitude, and no foothills,
as seen in Figure 4. Hill agents may have their altitude range determined by specifying a maximum
altitude and a variance. Since hill agents are a special case of mountain agents, these parameters
work exactly as they do for mountain agents.

Hill-Generate(mountain)
1 location⇥ random point at the base of mountain
2 direction⇥ direction away from mountain centerline
3 for each token
4 do
5 heightlocation ⇥ weighted average of neighborhood
6 raise a wedge perpendicular to direction
7 location⇥ next point in direction

10

Thursday, September 19, 13



Mountain agents

Narrow versus wide features

Figure 3: Mountains with narrower features (left), and with wider features (right).

make no explicit attempt to simulate faults, our mountain agent’s terrain elevation is similar, with
the major di�erence being that the mountain agent determines its path as it operates, avoiding
obstacles in its way, whereas fault simulators determine the fault’s position prior to modifying the
landscape.

The Mountain agent’s simplistic wedge raising produces acceptable results, mainly due to the
interaction of the smoothing agents that are making random walks over the terrain. Figure 3 shows
the e�ects of widening a mountain and increasing its foothill length.

Mountain agents are the most configurable of all agents, as they introduce most of the inter-
esting features on a landscape. Without them the heightmap would be mostly flat. The designer
determines the number of mountain agents that will run, and specifies how many tokens each
mountain agent will receive. A single mountain agent will randomly position itself on the map,
decide on direction, and begin elevating terrain. It stops when it runs out of tokens or is unable to
proceed due to some obstacle. Mountain agents attempt to turn to avoid obstacles, but this ability
is limited to ensure that agents do not randomly wander the map.

Mountain agents are given a maximum altitude, and vary the generated height within a specified
range below this height. Mountain agents may also be assigned a width and slope, which allows them
to either spread out, or to create tall narrow ranges. While mountain agents perform smoothing,
they also follow this up by adding noise to restore some of the character lost during smoothing.
This noise is specified by a probability of altering a point’s altitude, and a variance. When a point’s
altitude is modified during this roughening phase, a random value up to the variance parameter is
either added or subtracted from the point’s current altitude.

Mountain agents periodically generate foothills perpendicular to the range axis. The lengths
of these are randomly determined from a configurable range, as is the frequency at which these
foothills are created.

9

Thursday, September 19, 13



River agents

• Move from a random point on the coast 
towards a random point on a mountain 
ridge

• “Wiggle” along the path

• Stop when reaching too high altitudes

• Retrace the path down to the ocean, 
deepening a wedge along the path

Thursday, September 19, 13



River agentsFigure 5: River agents generated a dry river bed (left), and three rivers that meet at the ocean
(right).

River-Generate()
1 coast� random point on coastline
2 mountain� random point at base of a mountain
3 point� coast
4 while point not at mountain
5 do
6 add point to path
7 point� next point closer to mountain
8 while point not at coast
9 do

10 flatten wedge perpendicular to downhill direction
11 smooth area around point
12 point� next point in path

4 Implementation and Evaluation

We have implemented a framework that executes runnable agents in a random order, and for a
random slice of time (within a window). We assume atomic locking exists at the vertex level. The
first phase of agents, those that produce the coastline, do not share this scheduling system, but
there is nothing in these agents which depend on other agents. The purpose of this framework is to
demonstrate the independence of agents. The simplistic behavior of these agents results in complex
interactions among agents, and that the terrain is an emergent result.

Our agent-based terrain generator lends itself to implementation in either a purely procedural
environment, or in a designer-centric environment. In the former a game could use our technique
to generate terrain on-the-fly, guided by agent settings provided by the publisher in advance or in
real time. In the latter environment in which the publisher requires more control over the content,
a designer could use our technique to generate terrains that are first screened and/or modified by
a human being before being distributed. Note that unmodified terrains lend themselves to easy

12

Thursday, September 19, 13



River agents

A dry river, and the outflow of three rivers

Figure 5: River agents generated a dry river bed (left), and three rivers that meet at the ocean
(right).

River-Generate()
1 coast� random point on coastline
2 mountain� random point at base of a mountain
3 point� coast
4 while point not at mountain
5 do
6 add point to path
7 point� next point closer to mountain
8 while point not at coast
9 do

10 flatten wedge perpendicular to downhill direction
11 smooth area around point
12 point� next point in path

4 Implementation and Evaluation

We have implemented a framework that executes runnable agents in a random order, and for a
random slice of time (within a window). We assume atomic locking exists at the vertex level. The
first phase of agents, those that produce the coastline, do not share this scheduling system, but
there is nothing in these agents which depend on other agents. The purpose of this framework is to
demonstrate the independence of agents. The simplistic behavior of these agents results in complex
interactions among agents, and that the terrain is an emergent result.

Our agent-based terrain generator lends itself to implementation in either a purely procedural
environment, or in a designer-centric environment. In the former a game could use our technique
to generate terrain on-the-fly, guided by agent settings provided by the publisher in advance or in
real time. In the latter environment in which the publisher requires more control over the content,
a designer could use our technique to generate terrains that are first screened and/or modified by
a human being before being distributed. Note that unmodified terrains lend themselves to easy

12

Thursday, September 19, 13



Further questions

• Parameters... what parameters?

• What features of landscapes do we want to 
be able to specify?

• How can the human and the algorithm 
interact productively?

Thursday, September 19, 13



Search-based methods

• Use an evolutionary algorithm, or other 
stochastic optimization algorithm

• Evaluate candidate pieces of content using a 
fitness function

Thursday, September 19, 13



Issues in
search-based PCG

• Content representation and search space

• Direct or indirect?

• Fitness function

• Direct, simulation-based, interactive?

Thursday, September 19, 13



Multiobjective Exploration 
of the StarCraft Map Space

Julian Togelius, Mike Preuss,
Nicola Beume, Simon Wessing,

Johan Hagelbäck and Georgios N. Yannakakis

Thursday, September 19, 13



Our approach:

• Direct/indirect map representations

• An ensemble of fitness functions

• Multiobjective evolution

Thursday, September 19, 13



StarCraft

• Classic real-time 
strategy game

• Korea’s unofficial 
national sport

• Two or three player 
competitive matches

• Three distinct races

Thursday, September 19, 13



StarCraft map features
Thursday, September 19, 13



Traditional (constructive) 
map generation

• Place features on maps according to some 
heuristic

• e.g. fractals, growing islands, cellular 
automata

• Hard or impossible to optimize for 
gameplay properties

• Restrictions on possible content necessary 
in order to ensure valid maps

Thursday, September 19, 13



Our approach
• Define desirable traits of RTS maps

• Operationalize these traits as fitness 
functions

• Define a search space for maps

• Search for maps that satisfy the fitness 
functions as well as possible, using 
multiobjective evolution

• (visualize trade-offs as Pareto fronts)

Thursday, September 19, 13



Desirable traits
of an RTS map

• Playability

• Fairness

• Skill differentiation

• Interestingness

Thursday, September 19, 13



Playability
fitness functions

• Base space: minimum amount of space 
around bases

• Base distance: minimum distance between 
bases (via A*)

Thursday, September 19, 13



Fairness
fitness functions

• Distance from base to closest resource

• Resource ownership

• Resource safety

• Resource fairness
functions base their fitness calculations directly on the pheno-
type representation of the content. Such fitness functions are
obviously much easier to implement and faster to compute
than simulation-based functions, but it is hard to devise direct
fitness functions that accurately predict key aspects of player
experience (except when basing them on data-driven player
models built from extensive user studies [11]).

For this paper, we do not have the luxury of having
human players sit through countless hours to test the tens
of thousands of candidate maps the evolutionary algorithm
generates, nor any reliable and efficient way of testing maps
through algorithmic playthrough of the full game. However,
we can simulate one key aspect of RTS gameplay: moving
between two points along the fastest possible path. We use
the classical A* algorithm for this task, which returns the
number of cells along the shortest path (avoiding impassable
areas) – if not otherwise specified, “distance” means number
of cells on the shortest path found by A* in the rest of the
paper. We defined eight different fitness measures (mainly
based on distance) intended to reflect various desired game
characteristics. It was at the time of their formulation not
clear to which degree the various functions conflicted or
induced searchable fitness landscapes. The experiments in
this paper investigate the interplay of pairs of these functions.

The designed fitness functions are motivated by a number
of desirable characteristics of good StarCraft maps:

• Playability: It should be possible to engage in normal
gameplay: building up a base, attacking enemies etc.

• Fairness: All players should have similar possibility of
winning the game given the same skill level. Note that
this does not necessarily mean that starting positions
should be or look similar.

• Skill differentiation: Superior tactics should win more
often, so the map should allow use of different tactics.

• Interestingness: Maps should not all look the same, and
should not be bland (e.g. symmetrical or featureless).

Before calculating any of the below fitness measures, the
map is “sanity checked” by ensuring that every base and
all resources are accessible (there exists a path which is not
blocked by impassable areas) from every other base. Any
map not satisfying these criteria is assigned a fitness of 0
in all objectives, effectively discarding it. This test ensures
basic playability. All fitness functions are to be maximized
and are normalized to values in [0, 1].

The first two fitness functions relate mainly to the prop-
erties of the placement of players’ starting bases, and to the
impassable area around and between bases.

• fb0: Base space. For playability, some space for other
buildings is required next to the base. Out of the 5*5
cells surrounding a base, the base space is defined as the
fraction of these cells that are passable and reachable
within 5 steps (using A*) from the base. This fitness
value is the mean of the base space of all bases.

• fb1: Base distance. The measure makes sure that the
bases are not too easy to reach from each other so
that each player have the opportunity to develop their

(a) unsafe resources (b) safe resources

Fig. 1: Safe and unsafe resources. Bases are depicted by
pentagons, resources as circles. The lines mark shortest
possible paths for attackers/defenders.

base before clashing with the others. It contributes to
playability and skill differentiation as the game is more
difficult for all players when starting close to each other.
fb1 is the minimum distance between any two bases,
dividedby the sum of the map’s width and height.

The next four fitness functions relate to the placement of
resources, relative to each other and to bases; all of these
measures mainly contribute to fairness.

• fr1: Distance from base to closest resource. The dis-
tance from each base to its closest mineral and its closest
gas wells is calculated. fr1 is the quotient between the
minimal and maximal distance to the closest resource
for all bases.

• fr2: Resource ownership. Each base is associated with
its closest resource (done separately for minerals and
gas wells) and the base is considered as the owner
of that resource. In case a resource is the closest to
more than one base, the bases own only a fraction of it
each (assuming fair sharing). fr2 is the average fraction
players own of their closest resources, where a value of
1 means that all resource are clearly assigned.

• fr3: Resource safety. Another measure of how clearly
resources are assigned to a single player, fr3 mea-
sures the average deviation of path lengths between
one resource and all bases (see Fig. 1). So, for bases
b1, ..., bn and resources r1, ..., rm we calculate all path
lengths between resources and bases and group them by
resource type:

⇥j = 1, . . . ,m : Dj = {dist(rj , bi) | i = 1, . . . , n} .

fr3 = min{sGas, sMinerals}, where sGas and sMinerals are
simply the average standard deviations of the respective
sets Dj .

• fr4: Resource fairness. For each base, the shortest
distance to both types of resources is calculated. The
fitness is then calculated as 1 � (max � min), where
max and min are the maximum and minimum distances
between a base and its nearest resource.

The remaining two fitness functions deal with the character
of the paths of the map. These functions mainly contribute
to skill differentiation and interestingness.

Thursday, September 19, 13



Skill differentiation 
fitness functions

(also contribute to interestingness)

• Choke points
(narrowest width of shortest path)

• Path overlapping

Thursday, September 19, 13



Dual map 
representation

• Indirect representation: a vector of real 
numbers in {0..1}

• Direct representation: a 64x64 grid 
corresponding to a StarCraft map, including 
impassable areas, bases, resource sites

• Genotype to phenotype mapping:
before fitness calculation

Thursday, September 19, 13



Genotype to 
phenotype

• Two or three bases, five mineral sources 
and five gas wells: (phi, theta) coordinates

• Rock formations represented indirectly 
using “turtle graphics”. Each formation has:

• (x, y) starting position

• probability of turning left/right

• probability of gaps (“lifting the pen”)

Thursday, September 19, 13



Experiments

• Used the SMS-EMOA

• fast hypercube-based descendant of 
NSGA-II

• Tried optimizing each pair of objectives

• All at once not computationally feasible!

• Population 20, 50000 evaluations

Thursday, September 19, 13



Last piece of the puzzle

• From phenotype to StarCraft maps via 
SCPM

• Further manual editing possible but not 
necessary

• (shown maps slightly aesthetically 
enhanced)

Thursday, September 19, 13



(a) Map 1 (b) Map 2

Fig. 2: Example maps generated by optimization with different objective function combinations.

TABLE I: Average number of individuals in the last non-
dominated fronts for each function combination.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 6.9 1.6 5.0 7.8 2.9 7.5
fr1 5.8 9.1 3.4 3.7 7.6
fr2 1.2 2.7 20.0 1.3
fr3 7.3 3.3 8.7
fr4 2.8 8.1
fp1 4.2

TABLE II: Average hypervolume values of the last non-
dominated fronts for each function combination.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 0.675 0.724 0.394 0.673 0.644 0.075
fr1 1.000 0.452 0.993 0.895 0.107
fr2 0.504 0.993 0.900 0.114
fr3 0.473 0.479 0.053
fr4 0.891 0.108
fp1 0.099

barrier; see figure 2 for an example. fr2 and fr3 are both
attempts at measuring the same underlying quality, and
predictably there is almost no conflict between them; the
average Pareto front size is just over 1. All hypervolumes
involving fp2 (path overlapping) are very small, maybe due
to inadequate normalization. An improvement would be to
normalize with respect to free cells only rather than all cells.

C. Map Generation
Figure 2 depict two resulting from the simultaneous opti-

mization of fr4 and fp1. The map was generated using the

method described in section III. The large blue and red circles
mark the two bases. Minerals are indicated by light blue
diamonds, gas wells by a crater. The impassable areas are
drawn either as mountains (grey) or as water (dark blue). As
can be seen from the figure, the bases are situated close to the
map borders (probably due to the base placement method and
the fb1 constraints), the impassable areas are perforated with
small gaps (fp1) and the resources are very evenly distributed
(fr4).

D. Discussion

Our various fitness functions turned to differ greatly in how
easily they were to optimize and their potential for interesting
conflicts with other objectives. The base placement functions
fb1 and fb2, were so easy to optimize that they could be
converted to constraints.

The result of optimizing for the resource placement func-
tions looked very different upon visual inspection. We were
less than satisfied with functions fr1 and fr2; the latter
because it is too easy to optimize, and the former because
it results in maps that don’t look very StarCraft-like. fr4,
which considers all resources rather than just the closest ones,
renders much more palatable results. This suggest that a map
generator could use something like fr4 to generate the global
resource placement, and then simple place one resource of
each type within a single-screen line of sight from each base.
A similar measure that allows the difficulty of the resources
to be scaled would be interesting as well.

Optimizing the choke point function fp1 tends to generate
scattered and disconnected impassable areas, suggesting that
optimizing for low values of the same functions could gener-
ate areas of compact impassable areas and open spaces. This

Evolved map
Resource fairness vs. choke points

Thursday, September 19, 13



(a) Map 1 (b) Map 2

Fig. 2: Example maps generated by optimization with different objective function combinations.

TABLE I: Average number of individuals in the last non-
dominated fronts for each function combination.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 6.9 1.6 5.0 7.8 2.9 7.5
fr1 5.8 9.1 3.4 3.7 7.6
fr2 1.2 2.7 20.0 1.3
fr3 7.3 3.3 8.7
fr4 2.8 8.1
fp1 4.2

TABLE II: Average hypervolume values of the last non-
dominated fronts for each function combination.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 0.675 0.724 0.394 0.673 0.644 0.075
fr1 1.000 0.452 0.993 0.895 0.107
fr2 0.504 0.993 0.900 0.114
fr3 0.473 0.479 0.053
fr4 0.891 0.108
fp1 0.099

barrier; see figure 2 for an example. fr2 and fr3 are both
attempts at measuring the same underlying quality, and
predictably there is almost no conflict between them; the
average Pareto front size is just over 1. All hypervolumes
involving fp2 (path overlapping) are very small, maybe due
to inadequate normalization. An improvement would be to
normalize with respect to free cells only rather than all cells.

C. Map Generation
Figure 2 depict two resulting from the simultaneous opti-

mization of fr4 and fp1. The map was generated using the

method described in section III. The large blue and red circles
mark the two bases. Minerals are indicated by light blue
diamonds, gas wells by a crater. The impassable areas are
drawn either as mountains (grey) or as water (dark blue). As
can be seen from the figure, the bases are situated close to the
map borders (probably due to the base placement method and
the fb1 constraints), the impassable areas are perforated with
small gaps (fp1) and the resources are very evenly distributed
(fr4).

D. Discussion

Our various fitness functions turned to differ greatly in how
easily they were to optimize and their potential for interesting
conflicts with other objectives. The base placement functions
fb1 and fb2, were so easy to optimize that they could be
converted to constraints.

The result of optimizing for the resource placement func-
tions looked very different upon visual inspection. We were
less than satisfied with functions fr1 and fr2; the latter
because it is too easy to optimize, and the former because
it results in maps that don’t look very StarCraft-like. fr4,
which considers all resources rather than just the closest ones,
renders much more palatable results. This suggest that a map
generator could use something like fr4 to generate the global
resource placement, and then simple place one resource of
each type within a single-screen line of sight from each base.
A similar measure that allows the difficulty of the resources
to be scaled would be interesting as well.

Optimizing the choke point function fp1 tends to generate
scattered and disconnected impassable areas, suggesting that
optimizing for low values of the same functions could gener-
ate areas of compact impassable areas and open spaces. This

Another evolved map
Resource fairness vs. choke points

Thursday, September 19, 13



Three-player map
Thursday, September 19, 13



Another three-player map
Thursday, September 19, 13



Observations on the 
fitness functions

• Some objectives are trivial to optimise, e.g. 
base space was made into a constraint

• Some are easy and do not conflict with 
other objectives, e.g. resource ownership

• Some are easy but partially conflict with 
others, e.g. base distance

• Some are not so easy and highly 
conflicting, e.g. choke points

Thursday, September 19, 13



-0.70 -0.65 -0.60 -0.55 -0.50

-1
.0
0

-0
.9
0

-0
.8
0

-0
.7
0

b1

r4

-0.8 -0.6 -0.4 -0.2

-0
.9
95

-0
.9
85

-0
.9
75

-0
.9
65

p1

r4

Single pareto fronts
Left: resource fairness vs. base distance
Right: resource fairness vs. choke points

Thursday, September 19, 13



-0.70 -0.65 -0.60 -0.55 -0.50

-1
.0
0

-0
.9
0

-0
.8
0

-0
.7
0

b1

r4

-0.8 -0.6 -0.4 -0.2

-0
.9
95

-0
.9
85

-0
.9
75

-0
.9
65

p1

r4

Composite pareto fronts
Left: resource fairness vs. base distance
Right: resource fairness vs. choke points

Thursday, September 19, 13



What did we find?

• Our map representation works:
We can reliably evolve good-looking, 
playable maps

• Some of our fitness functions are good

• Some are not

• What to do with the Pareto fronts?

Thursday, September 19, 13



What to do with the 
Pareto fronts?

• Human designers might use Pareto fronts 
to understand the tradeoffs between 
different desirable properties

• Use evolved maps as starting points for 
further human design

• Or algorithmically select maps in automatic 
content generation

Thursday, September 19, 13



A taxonomy of PCG
• Online/Offline

• Necessary/Optional

• Random seeds/Parameter vectors

• Stochastic/Deterministic

• Constructive/Generate-and-test

Thursday, September 19, 13


