
Declarative approaches
Procedural Content Generation, Autumn 2012

Julian Togelius

(Thanks to Adam Smith!)

Declarative procedural
content generation?
• Designers state their intent (what they

want) instead of method (how to get it)

• Algorithms are used “under the hood” to
deliver whatever was asked for

• The user might be agnostic about the
algorithms

• Non-specified aspects may vary

This lecture

• Two very different papers...

• Tutenel et al. use declarative world
modelling to integrate PCG algorithms
and allow multi-level editing

• Smith and Mateas state properties and
constraints for game content
declaratively, and create content through
solving

A declarative approach
to procedural modeling

of virtual worlds
R. M. Smelik, T. Tutenel, K. J. de Kraker and R. Bidarra

Computers & Graphics 35 (2011) 352–363

Sketchaworld framework

Goals:

• Increase designers’ productivity while
retaining creative control

• Provide intuitive way of working with PCG
algorithms for non-experts

• Provide framework in which to integrate
new PCG research

Declarative modelling

• Procedural sketching: “paint” with PCG
tools

• Consistency maintenance through a GIS-
inspired system of layers

• Edits can be done at any time in any
layer, without messing up the other
layers more than necessary

1.3. Declarative modeling of virtual worlds

As stated above, procedural modeling research is no longer solely
focused on the generation of individual models of high quality.
Researchers realize that more intuitive input, improved user control,
and automatic integration of results are instrumental to the acceptance
of procedural methods in mainstream virtual world development.
However, to date, no research method or commercial tool provides
such an integrated and flexible solution that allows designers to
procedurally model a complete virtual world that matches their intent.

Our declarative modeling approach aims at contributing to these
open issues, by combining the strengths of manual and procedural
modeling, and providing a more productive and less complex work-
flow to model virtual worlds. Basically, this approach lets designers
concentrate on what they want to create instead of on how they
should model it. Designers state their intent using simple, high-level
constructs. The declarative approach builds upon established research
results on parameterized procedural generation, constraint solving
and semantic modeling, in order to automatically translate these
statements into a matching 3D virtual world. The consistency of this
world is automatically maintained using a semantically rich model of
all its features and their relations, analogous to the automatic
maintenance of interior scenes based on object semantics [37].

This article discusses the two main contributions of our
declarative modeling approach:

1. an intuitive and accessible user interaction method called
procedural sketching (Fig. 1 left hand) and

2. automatic virtual world consistency maintenance through gen-
eric methods for resolving interactions between terrain features
and the landscape (Fig. 1 middle).

We are developing a prototype modeling framework, called
SketchaWorld, that demonstrates the feasibility of this declarative
approach (see Fig. 1). Its goals are:

1. to increase designers’ productivity, while still allowing them to
work in an iterative manner and exercise control over the
generated results;

2. to provide an intuitive way for people without special modeling
expertise to create virtual worlds that meet their require-
ments; and

3. to facilitate the application of results from research in proce-
dural methods in an integrated modeling approach.

The remainder of this article is structured as follows. Section 2
presents interactive procedural sketching. Automatic virtual world
consistency maintenance is explained in Section 3. The implemen-
tation and results of the prototype framework are shown in Section
4, including an example modeling session. Section 5 discusses the
advantages and current limitations of our approach. Section 6
summarizes ongoing and future work.

2. Interactive procedural sketching

User input and control is provided by procedural sketching (Fig. 1
left hand). With easy to use editing tools, designers create a 2D
digital sketch: a rough layout map of the virtual world. Procedural
sketching provides two interaction modes:

Landscape mode: Designers paint a top view of the landscape by
coloring a grid with ecotopes (an area of homogeneous terrain and
features). These ecotopes encompass both elevation information
(elevation ranges, terrain roughness) and soil material information
(sand, grass, rock, etc.). The grid size is adjustable and the brushes
used are similar to typical brushes found in image editing software,
including draw, fill, lasso, magic wand and transition pattern
brushes (e.g. from ocean to shore).

Feature mode: Designers specify features like forests, lakes,
rivers, roads, and cities on the landscape using vector lines and
polygon tools. This resembles vector drawing software: placing and
modifying lines and polygons is done by manipulating control
points.

Each sketched element is procedurally expanded to a corre-
sponding terrain feature (procedural generation box in Fig. 1). To
directly see the effect of an edit action on the virtual world model
(e.g. drawing ecotopes, rerouting the path or modifying the shape
of a feature, removing a feature), users sketch on a 2D top view of
the generated virtual world. This view updates immediately as new
results are generated. Depending on the interaction mode, an
overlay is displayed representing relevant elements of the user
sketch. Fig. 2 shows the user interface for procedural sketching in
feature mode. By keeping the user interface and interaction modes
simple and clear, procedural sketching is more accessible for people
without special modeling expertise; see also [43].

A short feedback loop between a designer’s edit action and the
visualization of the generated results is essential to allow designers to
model virtual worlds iteratively. This requires each edit action to be
executed separately and the results of an action to be displayed
immediately. Such an interactive setup allows designers to quickly

painted
ecotopes

landscape mode

feature mode

virtual world consistency maintenance

Urban layer

Road layer

Vegetation layer

Water layer

Landscape layer

procedural
generation

procedural sketching

consistency
maintenance

terrain feature integration

landscape and
affected features

landscape and
relevant features

generated
terrain
feature

sketched
feature

specifications

3D virtual world

update update

Fig. 1. An overview of the workflow of the declarative modeling approach: using procedural sketching (Section 2), designers interactively create the virtual world, of which
each feature is automatically generated, integrated and maintained within the virtual world model (Section 3). From this semantic model of the virtual world, other
representations are derived, such as a 3D geometric model.

R.M. Smelik et al. / Computers & Graphics 35 (2011) 352–363354

Layers

Layers

• Urban layer

• Road layer

• Vegetation layer

• Water layer

• Landscape layer

Consistency
maintenance

• A change in one of the levels will typically
affect other levels (e.g. unleashing a river
through a city)

• A feature can make a claim for an area

• The claim can be granted or rejected,
depending on the priority of the
feature

• A feature can request a landscape

Feature interaction

• Two features claim the same area...

• If possible, this solved with a connection
(e.g. bridge, tunnel, road junction)

• Otherwise, the lower-priority feature
loses and will have to remodel the part

for instance a cost function for road connections. Furthermore, each
specific feature instance may override any of the priority values of
its type.

3.3. Landscape interaction

Before discussing how multiple features interact with each
other, we analyze the basic interaction between the landscape and
a single terrain feature. The landscape plays a special role in our
virtual world model in the sense that it forms its omni-present
basis on which all other terrain features attach. Therefore, the
landscape does not compete with terrain features in the form of
claims, and no priorities need to be defined for the landscape. A
local change to the landscape affects all terrain features in that area,
each to an extent that is defined by its particular semantics. This
notion is captured in the landscape interaction resolution method,
summarized in Algorithm 1.

Algorithm 1. Landscape interaction resolution method.

// solve all interactions between landscape and terrain features
// a - area of the landscape that is changed
SolveLandscapeInteractions(area a):

// find all affected terrain features
F ¼ ff jf A features,a \ f :areaa|g
sort F according to highest priorityclaim(f,levelstructural)
// let each affected feature handle the landscape interaction
for all feature f in F do

f.restructure(a, levelstructural)
end for

As follows from this algorithm, the outcome of the landscape
interacting with any feature f present in area a is always that f needs to
adapt its structure. However, features decide to what extent to
restructure, if at all, which typically depends on the scope of the
changes to the landscape. Drastic changes in the elevation profile will
probably cause features like roads or cities to strongly revise their
structure, whereas changes in soil material will probably affect
vegetation the most. Depending on the feature’s procedure imple-
mentation, restructuring could entail that part of the former structure
and objects of the feature are removed from the respective terrain
layer(s), and that corresponding area claims are abandoned, thus
allowing other features to reclaim these areas. We handle interactions
ordered by priorityclaim, as its value provides a good heuristic of the
impact a feature will have on other features.

Although features adjust their structure to the landscape profile,
to be able to attach to the landscape, features can have specific
requirements for the local elevation profile. For instance, a building
could require an area of flat terrain. To fulfill these requirements,
features can act on the landscape through modification operations,
which they can issue after each refinement phase. A modification is
a request by a feature fx for a certain area a of the landscape to be
constrained to the given elevation or soil material profile p. This
profile is to be integrated in the landscape according to a blending
fall-of mask m. This mask allows for smooth transition zones. Such
a modification request is combined with the overlapping requests
of nearby features; claimed areas cannot be affected by other
feature’s modify requests.

3.4. Feature interaction resolution

Terrain features compete with each other to claim areas of the
landscape for their own use. A generic interaction resolution
method has been devised to handle potentially conflicting claims
between terrain features. This resolution method is outlined in

Algorithm 2, and works as follows. A new terrain feature fx can
make a claim for a certain area of terrain ax, on either the structural
or the object level l. The set of interacting features is found, and is
sorted according to priorityclaim, where features with higher
priorities are resolved first, as these features will most likely have
the highest impact on the new claim.

Algorithm 2. Feature interaction resolution method.

// solve all interactions between a feature and existing features
// fx-feature which has made a new claim
// ax-area of terrain claimed by fx

// l-level of abstraction
SolveFeatureInteractions(feature fx, area ax, level l):

// find all interacting features with granted claims
F ¼ ffyjfyA features,ax \ fy. area a|g
sort F according to highest priorityclaim(fy, l)
// handle all feature interactions
for all feature fy in F do

if priorityclaim(fx, l) 4priorityclaim(fy, l) then
SolveInteraction(fy, fx, ax \ fy. area, l)

else
SolveInteraction(fx, fy, ax \ fy. area, l)

end if
end for

// solve an interaction between a pair of terrain features
// flose-feature for which the claim is rejected
// fwin-feature for which the claim is granted
// a-disputed area
// l - level of abstraction
SolveInteraction(feature flose, feature fwin, area a, level l):

// determine whether connection can and should be formed
if connectionDefined(flose.type, fwin.type)
priorityconnect(flose, fwin, a, l) 4 priorityconflict(flose, a, l) then

// interaction is solved with a connection
flose.connectTo(fwin, a, l)

else
// interaction is solved by restructuring the losing feature
flose.restructure(a, l)

end if

For each fy interacting with feature fx on an area a and on a
feature level l, the claim priorities for fx and fy are compared,
resulting in either fx losing the claim to fy or vice versa.

Each interaction is then resolved either by forming a connection
to the winning feature fwin or, if that is unavailable or has a lower
priority, by a conflict where the losing feature flose has to restructure
itself to avoid the lost area of terrain. More concrete, a connection
must be defined between the feature types of flose and fwin and it
must have a higher priority over conflict, which may not be the case
in specific scenarios where a given connection might be deemed
too costly or impractical.

Together, these resolution methods offer a generic and auto-
mated way to overcome interactions, while still providing the
designer with control through setting and overriding the different
types of priorities.

4. Framework implementation and results

To validate our approach we implemented representative
terrain features for each of the five terrain layers. Their generation
procedures are often based on (combinations of) existing proce-
dural methods, but they have been modified to fit in the framework,
i.e. to consider their surroundings and context, and to employ the

R.M. Smelik et al. / Computers & Graphics 35 (2011) 352–363 357

Landscape layer

• Grid of painted ecotopes is turned into
elevation and roughness

• Basically, randomization and interpolation
is added to the coarse painted grid

Water layer (rivers)
• Rivers flow from higher to lower

elevation

• A sequence of control points are
created...

• for each new point, a number of points
in a circle around it are scored
according to equations (next slide)

• The best point is chosen as next

Vegetation layer

• Type of vegetation at each spot depends
on:

• elevation profile, soil type (different
species have different preferences)

• simulation of competition for resources
(space, water)

Road layer

• Similar to the river creation: a sequence
of control points is created, and a spline
along these points define the road

• Prefers no change in elevation (unlike the
rivers!)

Urban layer

• Recursive subdivision approach (clusters,
districts, blocks, buildings)

• Land use model determines repulsion and
attraction between different city features

• Different land use models for different
types of cities (mercantile, feudal...)

the river, which leads to restructuring of the affected forests. Using
a modification request, the river bed and banks are carved into the
elevation profile (Fig. 4c). In Fig. 4d the designer adds a main road to
the virtual world. Although here the river has a higher priority than
the road, a connection is defined between the two features: a bridge
is inserted at the river crossing connecting the road segments.
Again, the landscape is modified, in this case to form a road
embankment (except at the crossing which is still claimed by the
river). The forests loose again some of their claimed terrain, now to
this primary road. Fig. 5a shows the resulting virtual world.

Subsequently, the designer specifies a small city with a fairly
low priority. As a result, its districts and secondary roads have to
form around the river, as shown in Fig. 4e. Finally, the designer
decides to reroute the primary road to now run through this

city (Fig. 4f). This edit action affects the city’s claim, therefore, this
city is restructured to include this main road and its bridge. Fig. 5b
shows the final virtual world, and details of the city are shown in
Fig. 5c.

4.7. Implementation and performance

SketchaWorld is implemented in C# and C++ and uses Open-
SceneGraph for the visualization of the resulting 3D virtual world.
Several of its generation and integration procedures are highly
suitable for a parallel implementation, and where therefore
implemented on the GPU using CUDA, a C-like programming
language for performing general purpose parallel computations

Fig. 4. A procedural sketching session: (a) basic landscape, defined by brushing ecotopes, (b) several forest features, (c) river flowing towards the sea, (d) road feature crossing
this river, (e) city created along the river and (f) road rerouted to run through the city.

(a) (b) (c)

Fig. 5. 3D virtual world, resulting from the example session of Fig. 4: (a) natural environment with road crossing river, (b) final virtual world and (c) city close-up.

R.M. Smelik et al. / Computers & Graphics 35 (2011) 352–363360

A taxonomy of PCG

• Online/Offline

• Necessary/Optional

• Random seeds/Parameter vectors

• Stochastic/Deterministic

• Constructive/Generate-and-test

Answer Set
Programming for

Procedural Content
Generation: A Design

Space Approach
Adam M. Smith and Michael Mateas

 
IEEE TCIAIG, 2011

Answer set
programming

• Declarative programming for search
problems

• Based on logic programming (syntax very
similar to Prolog)

• Finding an answer set is equivalent to
solving a satisfiability problem

AnsProlog

Answer Set Programming for PCG

3

A. Basic Logic Programming
AnsProlog syntax is derived from Prolog, the well-known

deductive logic programming language. As such, both code-
like and data-like knowledge is represented using a common
scheme: logical terms. Terms may either be atoms (named
symbols, numbers, or strings) or compounds consisting of
functor (a symbol) and a list of logical terms as arguments.
Collections of logical terms can readily represent any data
structure; the following terms might describe properties of
various game content artifacts:

teleportation_disabled.
initial_health(100).
weather_model(springtime).
allies(humans,elves).
damage(sword_of_might,11).
scripted_event(spawn(boss,temple),120).
valid_move(rock),
valid_move(paper),
valid_move(scissors),
valid_move(lizard),
valid_move(spock).
phase(1,movement),
phase(2,combat),
phase(3,diplomacy).
Each set of the above terms was terminated with a period to

indicate that they could also be interpreted as simple sentences
in first-order logic, i.e. facts. More complex logical sentences,
called rules, are possible using logic variables and the if-
operator “:-” (called the neck because it connects the head of a
rule to a body). These rules might be used to derive properties
of an artifact described in terms of facts like those above. Note
the use of a comma in rule bodies to mean “and” and reuse of
a rule’s head to signify an “or” between the various clauses of
a rule:

plateau_at(X) :-
 height(X-1, H), height(X, H), height(X+1, H).
hostile(A,B) :- enemy(A,B).
hostile(A,C) :- enemy(A,B), friend(B,C).
hostile(A,C) :- friend(A,B), enemy(B,C).
The first rule above roughly translates as “there is a plateau

at a position if its immediate neighbors have the same height”
(where X is the position and H is the particular height level
they share). The second rule is more complex; it captures the
logic of this statement: “I am hostile to someone if they are
my enemy, if they are the friend of one of my enemies, or if
they are the enemy of one of my friends.”

We say that the collection of rules and facts with structural-
ly-matching heads defines a predicate, a logical condition
which may either be true or false for each instantiation of its
arguments (e.g. hostility may perhaps exist between two cha-
racters Alice and Bob, but not between Alice and Eve). Some
predicates are extensionally defined by a list of facts (as in a
modern database) while others are intensionally defined by a
set of rules (for which unbound variables are treated as univer-
sally qualified, in a logical interpretation). It is sometimes

useful to think of facts as simply rules with no body (in fact,
solvers treat them as such).

B. Answer Set Programming
While general facts and rules are common to all logic pro-

gramming languages, AnsProlog uses two additional con-
structs: choice rules and integrity constraints. These constructs
are the key to the generative faculties of ASP.

Where traditional logic programming is concerned with
what must be true in some logical world, choice rules allow
the description of what might be true (facts available for infe-
rence through abductive reasoning). In choice rules, braces are
used to group a collection of terms, some number of which
might be true as facts in the logical world. The following is
traditional example of reasoning with choice rules:

{ rain, sprinkler }.
wet :- rain.
wet :- sprinkler.
dry :- not wet.
Translating, this snippet says that it might have rained and a

sprinkler might have been on (or both, or even neither). It also
says both rain or sprinkler necessarily imply wet (grass, per-
haps). The final rule allows us to derive the expectation of
dryness if there was no means of producing wetness.

ASP takes its name from its focus on “answer sets”. Answer
sets are the collections of ground (variable-free) facts that are
consistent with the logical worlds an answer set program de-
scribes. The small program above admits four answer sets,
each representing the combination of things that might be true
along with the necessary deductive consequences of those
selections:

dry.
wet, rain.
wet, sprinkler.
wet, rain, sprinkler.
Meanwhile, integrity constraints let a programmer express

what must not be true in a logical world, independent of what
other rules say. They resemble traditional rules with a missing
head (they can be imagined to read “implies contradiction”).

In the grass scenario, we can incorporate the new know-
ledge that, perhaps, our sprinkler has an automatic shut-off
that prevents it from running in the rain. To do this, we simply
write the integrity constraint that sprinkler can never be as-
sumed at the same time rain (i.e. the conjunction of sprinkler
and rain implies a contradiction):

:- sprinkler, rain.
The combined program now only admits the first three an-

swer sets. While an equivalent program could have been writ-
ten using choice rules alone, the benefit of integrity constraints
comes from their ability to filter out (or reject) undesirable
answer sets without having to understand the process by which
those undesirables might arise. Integrity constraints do not
simply block the final display of certain answer sets; they ac-
tually prevent undesirable answer sets from ever being gener-
ated in the first place.

AnsProlog

Answer Set Programming for PCG

3

A. Basic Logic Programming
AnsProlog syntax is derived from Prolog, the well-known

deductive logic programming language. As such, both code-
like and data-like knowledge is represented using a common
scheme: logical terms. Terms may either be atoms (named
symbols, numbers, or strings) or compounds consisting of
functor (a symbol) and a list of logical terms as arguments.
Collections of logical terms can readily represent any data
structure; the following terms might describe properties of
various game content artifacts:

teleportation_disabled.
initial_health(100).
weather_model(springtime).
allies(humans,elves).
damage(sword_of_might,11).
scripted_event(spawn(boss,temple),120).
valid_move(rock),
valid_move(paper),
valid_move(scissors),
valid_move(lizard),
valid_move(spock).
phase(1,movement),
phase(2,combat),
phase(3,diplomacy).
Each set of the above terms was terminated with a period to

indicate that they could also be interpreted as simple sentences
in first-order logic, i.e. facts. More complex logical sentences,
called rules, are possible using logic variables and the if-
operator “:-” (called the neck because it connects the head of a
rule to a body). These rules might be used to derive properties
of an artifact described in terms of facts like those above. Note
the use of a comma in rule bodies to mean “and” and reuse of
a rule’s head to signify an “or” between the various clauses of
a rule:

plateau_at(X) :-
 height(X-1, H), height(X, H), height(X+1, H).
hostile(A,B) :- enemy(A,B).
hostile(A,C) :- enemy(A,B), friend(B,C).
hostile(A,C) :- friend(A,B), enemy(B,C).
The first rule above roughly translates as “there is a plateau

at a position if its immediate neighbors have the same height”
(where X is the position and H is the particular height level
they share). The second rule is more complex; it captures the
logic of this statement: “I am hostile to someone if they are
my enemy, if they are the friend of one of my enemies, or if
they are the enemy of one of my friends.”

We say that the collection of rules and facts with structural-
ly-matching heads defines a predicate, a logical condition
which may either be true or false for each instantiation of its
arguments (e.g. hostility may perhaps exist between two cha-
racters Alice and Bob, but not between Alice and Eve). Some
predicates are extensionally defined by a list of facts (as in a
modern database) while others are intensionally defined by a
set of rules (for which unbound variables are treated as univer-
sally qualified, in a logical interpretation). It is sometimes

useful to think of facts as simply rules with no body (in fact,
solvers treat them as such).

B. Answer Set Programming
While general facts and rules are common to all logic pro-

gramming languages, AnsProlog uses two additional con-
structs: choice rules and integrity constraints. These constructs
are the key to the generative faculties of ASP.

Where traditional logic programming is concerned with
what must be true in some logical world, choice rules allow
the description of what might be true (facts available for infe-
rence through abductive reasoning). In choice rules, braces are
used to group a collection of terms, some number of which
might be true as facts in the logical world. The following is
traditional example of reasoning with choice rules:

{ rain, sprinkler }.
wet :- rain.
wet :- sprinkler.
dry :- not wet.
Translating, this snippet says that it might have rained and a

sprinkler might have been on (or both, or even neither). It also
says both rain or sprinkler necessarily imply wet (grass, per-
haps). The final rule allows us to derive the expectation of
dryness if there was no means of producing wetness.

ASP takes its name from its focus on “answer sets”. Answer
sets are the collections of ground (variable-free) facts that are
consistent with the logical worlds an answer set program de-
scribes. The small program above admits four answer sets,
each representing the combination of things that might be true
along with the necessary deductive consequences of those
selections:

dry.
wet, rain.
wet, sprinkler.
wet, rain, sprinkler.
Meanwhile, integrity constraints let a programmer express

what must not be true in a logical world, independent of what
other rules say. They resemble traditional rules with a missing
head (they can be imagined to read “implies contradiction”).

In the grass scenario, we can incorporate the new know-
ledge that, perhaps, our sprinkler has an automatic shut-off
that prevents it from running in the rain. To do this, we simply
write the integrity constraint that sprinkler can never be as-
sumed at the same time rain (i.e. the conjunction of sprinkler
and rain implies a contradiction):

:- sprinkler, rain.
The combined program now only admits the first three an-

swer sets. While an equivalent program could have been writ-
ten using choice rules alone, the benefit of integrity constraints
comes from their ability to filter out (or reject) undesirable
answer sets without having to understand the process by which
those undesirables might arise. Integrity constraints do not
simply block the final display of certain answer sets; they ac-
tually prevent undesirable answer sets from ever being gener-
ated in the first place.

AnsProlog

Answer Set Programming for PCG

3

A. Basic Logic Programming
AnsProlog syntax is derived from Prolog, the well-known

deductive logic programming language. As such, both code-
like and data-like knowledge is represented using a common
scheme: logical terms. Terms may either be atoms (named
symbols, numbers, or strings) or compounds consisting of
functor (a symbol) and a list of logical terms as arguments.
Collections of logical terms can readily represent any data
structure; the following terms might describe properties of
various game content artifacts:

teleportation_disabled.
initial_health(100).
weather_model(springtime).
allies(humans,elves).
damage(sword_of_might,11).
scripted_event(spawn(boss,temple),120).
valid_move(rock),
valid_move(paper),
valid_move(scissors),
valid_move(lizard),
valid_move(spock).
phase(1,movement),
phase(2,combat),
phase(3,diplomacy).
Each set of the above terms was terminated with a period to

indicate that they could also be interpreted as simple sentences
in first-order logic, i.e. facts. More complex logical sentences,
called rules, are possible using logic variables and the if-
operator “:-” (called the neck because it connects the head of a
rule to a body). These rules might be used to derive properties
of an artifact described in terms of facts like those above. Note
the use of a comma in rule bodies to mean “and” and reuse of
a rule’s head to signify an “or” between the various clauses of
a rule:

plateau_at(X) :-
 height(X-1, H), height(X, H), height(X+1, H).
hostile(A,B) :- enemy(A,B).
hostile(A,C) :- enemy(A,B), friend(B,C).
hostile(A,C) :- friend(A,B), enemy(B,C).
The first rule above roughly translates as “there is a plateau

at a position if its immediate neighbors have the same height”
(where X is the position and H is the particular height level
they share). The second rule is more complex; it captures the
logic of this statement: “I am hostile to someone if they are
my enemy, if they are the friend of one of my enemies, or if
they are the enemy of one of my friends.”

We say that the collection of rules and facts with structural-
ly-matching heads defines a predicate, a logical condition
which may either be true or false for each instantiation of its
arguments (e.g. hostility may perhaps exist between two cha-
racters Alice and Bob, but not between Alice and Eve). Some
predicates are extensionally defined by a list of facts (as in a
modern database) while others are intensionally defined by a
set of rules (for which unbound variables are treated as univer-
sally qualified, in a logical interpretation). It is sometimes

useful to think of facts as simply rules with no body (in fact,
solvers treat them as such).

B. Answer Set Programming
While general facts and rules are common to all logic pro-

gramming languages, AnsProlog uses two additional con-
structs: choice rules and integrity constraints. These constructs
are the key to the generative faculties of ASP.

Where traditional logic programming is concerned with
what must be true in some logical world, choice rules allow
the description of what might be true (facts available for infe-
rence through abductive reasoning). In choice rules, braces are
used to group a collection of terms, some number of which
might be true as facts in the logical world. The following is
traditional example of reasoning with choice rules:

{ rain, sprinkler }.
wet :- rain.
wet :- sprinkler.
dry :- not wet.
Translating, this snippet says that it might have rained and a

sprinkler might have been on (or both, or even neither). It also
says both rain or sprinkler necessarily imply wet (grass, per-
haps). The final rule allows us to derive the expectation of
dryness if there was no means of producing wetness.

ASP takes its name from its focus on “answer sets”. Answer
sets are the collections of ground (variable-free) facts that are
consistent with the logical worlds an answer set program de-
scribes. The small program above admits four answer sets,
each representing the combination of things that might be true
along with the necessary deductive consequences of those
selections:

dry.
wet, rain.
wet, sprinkler.
wet, rain, sprinkler.
Meanwhile, integrity constraints let a programmer express

what must not be true in a logical world, independent of what
other rules say. They resemble traditional rules with a missing
head (they can be imagined to read “implies contradiction”).

In the grass scenario, we can incorporate the new know-
ledge that, perhaps, our sprinkler has an automatic shut-off
that prevents it from running in the rain. To do this, we simply
write the integrity constraint that sprinkler can never be as-
sumed at the same time rain (i.e. the conjunction of sprinkler
and rain implies a contradiction):

:- sprinkler, rain.
The combined program now only admits the first three an-

swer sets. While an equivalent program could have been writ-
ten using choice rules alone, the benefit of integrity constraints
comes from their ability to filter out (or reject) undesirable
answer sets without having to understand the process by which
those undesirables might arise. Integrity constraints do not
simply block the final display of certain answer sets; they ac-
tually prevent undesirable answer sets from ever being gener-
ated in the first place.

Answer set programming:
choice rules

Answer Set Programming for PCG

3

A. Basic Logic Programming
AnsProlog syntax is derived from Prolog, the well-known

deductive logic programming language. As such, both code-
like and data-like knowledge is represented using a common
scheme: logical terms. Terms may either be atoms (named
symbols, numbers, or strings) or compounds consisting of
functor (a symbol) and a list of logical terms as arguments.
Collections of logical terms can readily represent any data
structure; the following terms might describe properties of
various game content artifacts:

teleportation_disabled.
initial_health(100).
weather_model(springtime).
allies(humans,elves).
damage(sword_of_might,11).
scripted_event(spawn(boss,temple),120).
valid_move(rock),
valid_move(paper),
valid_move(scissors),
valid_move(lizard),
valid_move(spock).
phase(1,movement),
phase(2,combat),
phase(3,diplomacy).
Each set of the above terms was terminated with a period to

indicate that they could also be interpreted as simple sentences
in first-order logic, i.e. facts. More complex logical sentences,
called rules, are possible using logic variables and the if-
operator “:-” (called the neck because it connects the head of a
rule to a body). These rules might be used to derive properties
of an artifact described in terms of facts like those above. Note
the use of a comma in rule bodies to mean “and” and reuse of
a rule’s head to signify an “or” between the various clauses of
a rule:

plateau_at(X) :-
 height(X-1, H), height(X, H), height(X+1, H).
hostile(A,B) :- enemy(A,B).
hostile(A,C) :- enemy(A,B), friend(B,C).
hostile(A,C) :- friend(A,B), enemy(B,C).
The first rule above roughly translates as “there is a plateau

at a position if its immediate neighbors have the same height”
(where X is the position and H is the particular height level
they share). The second rule is more complex; it captures the
logic of this statement: “I am hostile to someone if they are
my enemy, if they are the friend of one of my enemies, or if
they are the enemy of one of my friends.”

We say that the collection of rules and facts with structural-
ly-matching heads defines a predicate, a logical condition
which may either be true or false for each instantiation of its
arguments (e.g. hostility may perhaps exist between two cha-
racters Alice and Bob, but not between Alice and Eve). Some
predicates are extensionally defined by a list of facts (as in a
modern database) while others are intensionally defined by a
set of rules (for which unbound variables are treated as univer-
sally qualified, in a logical interpretation). It is sometimes

useful to think of facts as simply rules with no body (in fact,
solvers treat them as such).

B. Answer Set Programming
While general facts and rules are common to all logic pro-

gramming languages, AnsProlog uses two additional con-
structs: choice rules and integrity constraints. These constructs
are the key to the generative faculties of ASP.

Where traditional logic programming is concerned with
what must be true in some logical world, choice rules allow
the description of what might be true (facts available for infe-
rence through abductive reasoning). In choice rules, braces are
used to group a collection of terms, some number of which
might be true as facts in the logical world. The following is
traditional example of reasoning with choice rules:

{ rain, sprinkler }.
wet :- rain.
wet :- sprinkler.
dry :- not wet.
Translating, this snippet says that it might have rained and a

sprinkler might have been on (or both, or even neither). It also
says both rain or sprinkler necessarily imply wet (grass, per-
haps). The final rule allows us to derive the expectation of
dryness if there was no means of producing wetness.

ASP takes its name from its focus on “answer sets”. Answer
sets are the collections of ground (variable-free) facts that are
consistent with the logical worlds an answer set program de-
scribes. The small program above admits four answer sets,
each representing the combination of things that might be true
along with the necessary deductive consequences of those
selections:

dry.
wet, rain.
wet, sprinkler.
wet, rain, sprinkler.
Meanwhile, integrity constraints let a programmer express

what must not be true in a logical world, independent of what
other rules say. They resemble traditional rules with a missing
head (they can be imagined to read “implies contradiction”).

In the grass scenario, we can incorporate the new know-
ledge that, perhaps, our sprinkler has an automatic shut-off
that prevents it from running in the rain. To do this, we simply
write the integrity constraint that sprinkler can never be as-
sumed at the same time rain (i.e. the conjunction of sprinkler
and rain implies a contradiction):

:- sprinkler, rain.
The combined program now only admits the first three an-

swer sets. While an equivalent program could have been writ-
ten using choice rules alone, the benefit of integrity constraints
comes from their ability to filter out (or reject) undesirable
answer sets without having to understand the process by which
those undesirables might arise. Integrity constraints do not
simply block the final display of certain answer sets; they ac-
tually prevent undesirable answer sets from ever being gener-
ated in the first place.

Answer Set Programming for PCG

3

A. Basic Logic Programming
AnsProlog syntax is derived from Prolog, the well-known

deductive logic programming language. As such, both code-
like and data-like knowledge is represented using a common
scheme: logical terms. Terms may either be atoms (named
symbols, numbers, or strings) or compounds consisting of
functor (a symbol) and a list of logical terms as arguments.
Collections of logical terms can readily represent any data
structure; the following terms might describe properties of
various game content artifacts:

teleportation_disabled.
initial_health(100).
weather_model(springtime).
allies(humans,elves).
damage(sword_of_might,11).
scripted_event(spawn(boss,temple),120).
valid_move(rock),
valid_move(paper),
valid_move(scissors),
valid_move(lizard),
valid_move(spock).
phase(1,movement),
phase(2,combat),
phase(3,diplomacy).
Each set of the above terms was terminated with a period to

indicate that they could also be interpreted as simple sentences
in first-order logic, i.e. facts. More complex logical sentences,
called rules, are possible using logic variables and the if-
operator “:-” (called the neck because it connects the head of a
rule to a body). These rules might be used to derive properties
of an artifact described in terms of facts like those above. Note
the use of a comma in rule bodies to mean “and” and reuse of
a rule’s head to signify an “or” between the various clauses of
a rule:

plateau_at(X) :-
 height(X-1, H), height(X, H), height(X+1, H).
hostile(A,B) :- enemy(A,B).
hostile(A,C) :- enemy(A,B), friend(B,C).
hostile(A,C) :- friend(A,B), enemy(B,C).
The first rule above roughly translates as “there is a plateau

at a position if its immediate neighbors have the same height”
(where X is the position and H is the particular height level
they share). The second rule is more complex; it captures the
logic of this statement: “I am hostile to someone if they are
my enemy, if they are the friend of one of my enemies, or if
they are the enemy of one of my friends.”

We say that the collection of rules and facts with structural-
ly-matching heads defines a predicate, a logical condition
which may either be true or false for each instantiation of its
arguments (e.g. hostility may perhaps exist between two cha-
racters Alice and Bob, but not between Alice and Eve). Some
predicates are extensionally defined by a list of facts (as in a
modern database) while others are intensionally defined by a
set of rules (for which unbound variables are treated as univer-
sally qualified, in a logical interpretation). It is sometimes

useful to think of facts as simply rules with no body (in fact,
solvers treat them as such).

B. Answer Set Programming
While general facts and rules are common to all logic pro-

gramming languages, AnsProlog uses two additional con-
structs: choice rules and integrity constraints. These constructs
are the key to the generative faculties of ASP.

Where traditional logic programming is concerned with
what must be true in some logical world, choice rules allow
the description of what might be true (facts available for infe-
rence through abductive reasoning). In choice rules, braces are
used to group a collection of terms, some number of which
might be true as facts in the logical world. The following is
traditional example of reasoning with choice rules:

{ rain, sprinkler }.
wet :- rain.
wet :- sprinkler.
dry :- not wet.
Translating, this snippet says that it might have rained and a

sprinkler might have been on (or both, or even neither). It also
says both rain or sprinkler necessarily imply wet (grass, per-
haps). The final rule allows us to derive the expectation of
dryness if there was no means of producing wetness.

ASP takes its name from its focus on “answer sets”. Answer
sets are the collections of ground (variable-free) facts that are
consistent with the logical worlds an answer set program de-
scribes. The small program above admits four answer sets,
each representing the combination of things that might be true
along with the necessary deductive consequences of those
selections:

dry.
wet, rain.
wet, sprinkler.
wet, rain, sprinkler.
Meanwhile, integrity constraints let a programmer express

what must not be true in a logical world, independent of what
other rules say. They resemble traditional rules with a missing
head (they can be imagined to read “implies contradiction”).

In the grass scenario, we can incorporate the new know-
ledge that, perhaps, our sprinkler has an automatic shut-off
that prevents it from running in the rain. To do this, we simply
write the integrity constraint that sprinkler can never be as-
sumed at the same time rain (i.e. the conjunction of sprinkler
and rain implies a contradiction):

:- sprinkler, rain.
The combined program now only admits the first three an-

swer sets. While an equivalent program could have been writ-
ten using choice rules alone, the benefit of integrity constraints
comes from their ability to filter out (or reject) undesirable
answer sets without having to understand the process by which
those undesirables might arise. Integrity constraints do not
simply block the final display of certain answer sets; they ac-
tually prevent undesirable answer sets from ever being gener-
ated in the first place.

Answer set programming:
answer set

• Cannot be true (“implies contradiction”)

Answer Set Programming for PCG

3

A. Basic Logic Programming
AnsProlog syntax is derived from Prolog, the well-known

deductive logic programming language. As such, both code-
like and data-like knowledge is represented using a common
scheme: logical terms. Terms may either be atoms (named
symbols, numbers, or strings) or compounds consisting of
functor (a symbol) and a list of logical terms as arguments.
Collections of logical terms can readily represent any data
structure; the following terms might describe properties of
various game content artifacts:

teleportation_disabled.
initial_health(100).
weather_model(springtime).
allies(humans,elves).
damage(sword_of_might,11).
scripted_event(spawn(boss,temple),120).
valid_move(rock),
valid_move(paper),
valid_move(scissors),
valid_move(lizard),
valid_move(spock).
phase(1,movement),
phase(2,combat),
phase(3,diplomacy).
Each set of the above terms was terminated with a period to

indicate that they could also be interpreted as simple sentences
in first-order logic, i.e. facts. More complex logical sentences,
called rules, are possible using logic variables and the if-
operator “:-” (called the neck because it connects the head of a
rule to a body). These rules might be used to derive properties
of an artifact described in terms of facts like those above. Note
the use of a comma in rule bodies to mean “and” and reuse of
a rule’s head to signify an “or” between the various clauses of
a rule:

plateau_at(X) :-
 height(X-1, H), height(X, H), height(X+1, H).
hostile(A,B) :- enemy(A,B).
hostile(A,C) :- enemy(A,B), friend(B,C).
hostile(A,C) :- friend(A,B), enemy(B,C).
The first rule above roughly translates as “there is a plateau

at a position if its immediate neighbors have the same height”
(where X is the position and H is the particular height level
they share). The second rule is more complex; it captures the
logic of this statement: “I am hostile to someone if they are
my enemy, if they are the friend of one of my enemies, or if
they are the enemy of one of my friends.”

We say that the collection of rules and facts with structural-
ly-matching heads defines a predicate, a logical condition
which may either be true or false for each instantiation of its
arguments (e.g. hostility may perhaps exist between two cha-
racters Alice and Bob, but not between Alice and Eve). Some
predicates are extensionally defined by a list of facts (as in a
modern database) while others are intensionally defined by a
set of rules (for which unbound variables are treated as univer-
sally qualified, in a logical interpretation). It is sometimes

useful to think of facts as simply rules with no body (in fact,
solvers treat them as such).

B. Answer Set Programming
While general facts and rules are common to all logic pro-

gramming languages, AnsProlog uses two additional con-
structs: choice rules and integrity constraints. These constructs
are the key to the generative faculties of ASP.

Where traditional logic programming is concerned with
what must be true in some logical world, choice rules allow
the description of what might be true (facts available for infe-
rence through abductive reasoning). In choice rules, braces are
used to group a collection of terms, some number of which
might be true as facts in the logical world. The following is
traditional example of reasoning with choice rules:

{ rain, sprinkler }.
wet :- rain.
wet :- sprinkler.
dry :- not wet.
Translating, this snippet says that it might have rained and a

sprinkler might have been on (or both, or even neither). It also
says both rain or sprinkler necessarily imply wet (grass, per-
haps). The final rule allows us to derive the expectation of
dryness if there was no means of producing wetness.

ASP takes its name from its focus on “answer sets”. Answer
sets are the collections of ground (variable-free) facts that are
consistent with the logical worlds an answer set program de-
scribes. The small program above admits four answer sets,
each representing the combination of things that might be true
along with the necessary deductive consequences of those
selections:

dry.
wet, rain.
wet, sprinkler.
wet, rain, sprinkler.
Meanwhile, integrity constraints let a programmer express

what must not be true in a logical world, independent of what
other rules say. They resemble traditional rules with a missing
head (they can be imagined to read “implies contradiction”).

In the grass scenario, we can incorporate the new know-
ledge that, perhaps, our sprinkler has an automatic shut-off
that prevents it from running in the rain. To do this, we simply
write the integrity constraint that sprinkler can never be as-
sumed at the same time rain (i.e. the conjunction of sprinkler
and rain implies a contradiction):

:- sprinkler, rain.
The combined program now only admits the first three an-

swer sets. While an equivalent program could have been writ-
ten using choice rules alone, the benefit of integrity constraints
comes from their ability to filter out (or reject) undesirable
answer sets without having to understand the process by which
those undesirables might arise. Integrity constraints do not
simply block the final display of certain answer sets; they ac-
tually prevent undesirable answer sets from ever being gener-
ated in the first place.

Answer set programming:
integrity constraints

ASP solvers

• Generates answer sets from ASP
programs

• Can be treated as black-box

• Usually do not generate complete
candidates, but proceed by excluding
whole regions of search space that
violate constraints

ASP for PCG
• Crucial properties of game content are

represented in ASP form

• Designers ask questions that embody
their design intent (“which levels have 15
rooms, no green mushrooms and can be
cleared without wall-jumping?”)

• An ASP solver delivers an answer set,
where each answer is interpreted as a
game content artifact

ASP for PCGAnswer Set Programming for PCG

5

level, as the subsequent tutorial example and case study sec-
tions will strongly ground the method.

A. Representing Artifacts and Spaces
Artifacts, in ASP, are represented by logical facts that de-

scribe their in-game properties. There is a certain minimal set
of facts that is needed to reconstruct an artifact in the context
of a game (for a maze: the start and finish locations, along
with traversability of the map). However, we will also de-
scribe artifacts with extra annotations about properties of an
artifact which are derivable (analyzable) from its basic struc-
ture (for a maze: the reachability of a given location, the
length of the shortest solution, the number of dead ends, etc.).
While these annotations are not needed in the running game,
they provide a powerful vocabulary for describing the shape of
a design space.

The design space itself is represented with some assertions
about what properties individual artifacts might have (using
AnsProlog choice rules) and other complimentary assertions
about properties artifacts must or must not have (using An-
sProlog integrity constraints). Passing such a design space
model to an ASP solver produces the collections of facts we
use to construct the in-game artifact.

Supporting the idea of basic structure and optional annota-
tions, the design space representation may also use logical
rules to describe how artifacts should be analyzed (these are
the rules by which those annotations are deduced). As a design
space model becomes more refined, the bulk of its AnsProlog
representation may be devoted to building up a sufficiently
nuanced vocabulary to express a critical property that all de-
sirable artifacts must or must not have. This complexity is
unavoidable when that property really is a definitional aspect
of the designer’s intention.

Returning to the maze generation scenario, the program de-
scribing a design space of mazes might contain rules for deriv-
ing the minimum solution length for a maze and integrity con-
straints to require certain bounds on that length. While this
information is never displayed to a player, it is an integral
commitment of the maze design space we will describe in the
tutorial example later.

By describing the schema, requirements, and analysis of ar-
tifacts in a declarative manner, the designer using ASP simul-
taneously avoids commitments to (some) accidental complexi-
ty, and gives the ASP solver the knowledge that it can use to
adapt its internal search process to the domain at hand (via
constraint propagation, clause learning, and other techniques).

B. Modeling, Interpretation, and Refinement
In applying ASP to a map generation problem, modeling is

the process of capturing the design space of desirable maps as
a logic program. Interpretation is the process of importing
logical facts about a particular map into a game where it can
be played. Clearly, both need to be addressed, at least in a
tentative fashion, before we can feel the implications of our
design space on the gameplay experience.

An advantage of using ASP solvers over hand-crafted ge-
nerative procedures is that they can be used as black boxes –
detailed knowledge of their internals is not required (or even
visible). The details of the modeling and interpretation
processes that map our concrete artifact design problem into
ASP are, however, critical. For the meta-level design problem
of sculpting an appropriate artifact design space, both
processes need to work together so that a designer can sample
artifacts in-game and make intelligent decisions about the next
iterative design move.

The first thing that needs commitment is the schema for (or
expected structure of) logical terms that will be used to
represent artifacts. As described in the previous section, these
terms have a universal representational ability; however, we
have found many PCG problems to be well covered using only
global Boolean flags, sets, and simple table structures. Con-
crete examples will be given for the various systems described
later in the paper, but the game-themed logical terms in the
previous section should spark the imagination.

Once the basic structure of artifacts has been decided, the
designer/programmer can start the interpretation process by
creating a loader for a few hand-written answer sets into a
game engine where the artifacts will be observed. The fixed
grammar of logical terms makes them relatively easy to parse
and convert into the data structures required by a game engine.

With basic interpretation in place, it is time to replace the
hand-written answer sets with the output of a minimal ASP-
based generator. For each type of term used to describe arti-
facts, one or more choice rules should be created which will
allow the blind generation of terms that are at least in the right
language. These core choice rules can be imagined to define a
basic “generate” procedure (or a default design space), though
really they form a specification to which a procedure should
conform.

Now, using a solver, the programmer can generate several
answer sets from the extremely broad, basic generative space
(which will probably include many obviously undesirable re-
sults due to a lack of constraints). The presence of undesirable
artifacts in the minimally constrained generative space be-
comes the feedback that drives refinement of the model, which
is a step in the larger design-space “sculpting” process (build-
ing out support for new structures and then carving away un-
wanted interactions). For example, in developing a map gene-
rator, noticing unreachable areas of terrain might suggest the
addition of a constraint that would forbid this from happening

Answer Sets Logic Program

Artifacts Design Space
Generate

Solve

Model Interpret

Inspire

Fig 1. In our method, the intent to generate artifacts from a (conceptual)
design space is carried out by first modeling the design space with a logic
program, and then invoking a domain-independent solver to produce
answer sets which can be interpreted as descriptions of the desired arti-
facts. Experience with generated artifacts inspires redefinition of the
design space. This diagram mimics a similar diagram in ASP software
engineering for which “design space” and “artifacts” replace the more
generic “problem” and “solution” [26].

ASP for PCG

Crucial steps:

• Modelling the content domain as ASP

• Creating a mechanism that interprets
collections of ASP statements as content

• Designing designer-relevant ASP questions

An example:
Chromatic mazes

• Colour wheel: red-yellow-green-cyan-
blue-magenta

• No explicit walls

• Movement is permitted between cells of
the same or adjacent colour

Chromatic mazeAnswer Set Programming for PCG

7

ASP provides a means for rapidly creating and easily mod-
ifying search-based generators over finite data structures. We
emphasize the “search-based” label here to point out the fact
that ASP-based generators are meaningfully grounded in
search while being strictly incompatible with the definition of
term given in a recent PCG survey [3]. ASP solvers use search
to generate content without the use of a real-valued fitness
function or contingent generation of new artifacts based on the
score assigned to previously evaluated, complete artifacts. In
the existing applications we survey later, three of the four sys-
tems lack any numerical properties which are meaningful to
optimize, and the exception, DIORAMA, uses optimization as a
means to implement layered preferences.

We should clarify that ASP’s focus on finite data structures
refers to a countable set of alternatives to search over. A vec-
tor of real numbers has a fixed number of dimensions, but it
has an infinite number of concrete instantiations. Meanwhile,
planar graphs (perhaps representing connectivity between
rooms in a generated dungeon map) have a variable structure,
but readily become a finite search space if we upper-bound the
number of nodes that may be used. The same applies to
bounded trees, sequences, and other data structures.

Thus, ASP is applicable to problems where the apparent
task is to select structures with desirable properties from a vast
but countably finite space of structures, where these properties
can be described using AnsProlog. While few PCG problems
meet this description exactly (due to requiring properties that
are impractical to model in logic or involving infinite spaces),
many problems will contain significant subproblems that do
meet this condition. Whether ASP is an attractive choice, then,
hinges on the complexity of factoring out the ASP-solvable
problem and integrating its solution into a larger generator.
The DIORAMA system, described later, provides an excellent
example of this nesting of an ASP-based generator inside of a
general Python program.

For applications where finiteness would exclude the use of
an ASP solver, another declarative, solver-based solution will
often be available and provide similar benefits. For unbounded
structural spaces, HYPROLOG implements the same abductive
reasoning that supports the generativity of ASP [29]. For con-
tinuous spaces, CLP(Q,R) blends non-linear constraints and
optimization for the rationals and real numbers with traditional
logic programming [30]. Such alternatives gain wider applica-
bility in exchange for increased language and integration
complexity. In particular, both of these systems are imple-
mented in the context of Turing-complete Prolog systems
which requires programmer attention to ordering of code
fragments and the avoiding of infinite loops. We have found
that ASP represents a sweet-spot for PCG in the realm of dec-
larative, solver-based generative approaches because the abili-
ty to rapidly try out alternative designs with minimal debug-
ging time is so important in design problems

V. TUTORIAL EXAMPLE
To illustrate a simple but complete application of ASP to a

toy PCG problem, we now describe our reimplementation of
the “chromatic maze” generator described in Ashlock’s “Au-
tomatic Generation of Game Elements via Evolution” [31].
The original system used a straightforward genetic algorithm

with a fitness function measuring maze solution lengths calcu-
lated using a dynamic programming algorithm adapted to the
unique mechanics of chromatic mazes. The paper additionally
described a chess maze generator which we have also re-
created but will not detail in this paper.

A. Chromatic Mazes
Chromatic mazes are a kind of puzzle using a square map

consisting of colored tiles. Where other mazes might have
explicit walls, passage between tiles in chromatic mazes is
regulated by the adjacency of the tile colors on a color wheel.
Red-yellow-yellow-red-magenta is a valid path, but red-blue is
an illegal move (for the color wheel used in our generator). In
addition to the colored grid, two tiles are marked for the start
and finish (entrance and exit) of the maze. See Fig. 2 for an
example chromatic maze with an overlaid solution.

The content generation task for chromatic mazes is to invent
several unique, playable mazes with preferably long shortest-
path distances between the start and finish. While path lengths
are a very crude measure maze difficulty, they provide us with
a reasonable example of how to work with numeric desirabili-
ty metrics in PCG problems.

B. Modeling the Design Space
While modeling and interpretation are usually carried out in

parallel, we will rearrange the development of our ASP-based
generator to form a less chaotic story.

First, laying down a schema for logical terms that describe a
chromatic maze, we want to generate terms shaped like the
following:

cell(Color,X,Y), start(X,Y), finish(X,Y).
Creating the choice rules that would generate these kinds of

terms requires some background definitions to specify the

Fig 2. A chromatic maze created with our ASP-based generator. Valid
moves consist of single steps on a red-yellow-green-cyan-blue-magenta
color wheel (repeats allowed). The dark line represents a shortest path
between the start and finish tiles.

Chromatic maze

• There are six colours.

• The maze has dimensions six by six.

• There is exactly one cell at each {x, y}
position, and it has one of the six colours.

• There is exactly one start position and
one finish position.

Chromatic maze
generator

cell(Color, X, Y), start(X, Y), finish(X, Y).

color(red; yellow; green; cyan; blue; magenta).

dim(1..6).

1 { cell(C,X,Y) :color(C) } :- dim(X),dim(Y).

1 { start(X,Y) :dim(X) :dim(Y) } 1.

1 { finish(X,Y) :dim(X) :dim(Y) } 1.

Chromatic maze
generator

• Actually a complete generator!

• Except that it might generate unsolvable
mazes...

Solution

:- not victory.

Solution: solvability
constraint

Answer Set Programming for PCG

8

range of values for the Color and X/Y variables. These ranges
are easily asserted using these simple AnsProlog statements:

color(red; yellow; green; cyan; blue; magenta).
dim(1..6).
This snippet captures the valid range of our representation

language using choice rules:
1 { cell(C,X,Y) :color(C) } 1 :- dim(X),dim(Y).
1 { start(X,Y) :dim(X) :dim(Y) } 1.
1 { finish(X,Y) :dim(X) :dim(Y) } 1.
The unfamiliar elements of syntax used here describe the

scope of quantification for variables and put bounds on the
number of generated facts. In this case, the colon operator and
the numerals together ensure that exactly one cell fact is pro-
duced for each possible assignment of X and Y in the first rule
(36 facts), and exactly one start and one finish fact are pro-
duced for the entire puzzle.

The last five lines of AnsProlog code above actually consti-
tute a working generator for chromatic mazes! The design
space it describes, however, needs some refinement as the
finish tile may not be reachable from the start tile (the genera-
tive space contains some undesirable mazes). Expressing that
a maze must not be impossible to complete is indeed a job for
integrity constraints. The following constraint accomplishes
this, but sets up the need for additional definitions:

:- not victory.
The next snippet grounds the idea of “victory” required by

the above constraint using traditional logical rules. In it, we
have elided the definition of a predicate for passage between
tiles; however, this predicate is easy to define in terms of the
color and cell facts with some arithmetic to model grid-
adjacency.

player_at(0,X,Y) :- start(X,Y).
player_at(T,X,Y) :-
 player_at(T-1,SX,SY),
 passable(SX,SY,X,Y),
 0 {player_at(0..T-1,X,Y)} 0.
victory_at(T) :- player_at(T,X,Y), finish(X,Y).
victory :- victory_at(T).
In exchange for describing the mechanics of our mazes in

AnsProlog, we gain a high level vocabulary for talking about
properties of potential mazes. At this point, our answer set
program captures the idea of provably-valid maze designs; all
that is needed to upgrade our generator to one that produces
desirable mazes (with long shortest-path lengths) is to add one
more integrity constraint:

:- victory_at(T), T < 22.
While AnsProlog provides an additional construct (the max-

imize statement) that we could used to produce a best-possible
maze with the introduction of just one more predicate, we
have found that absolute optimization is rarely desirable for
PCG problems. Instead, a good generator will produce a large
space of artifacts with critical metrics guaranteed to fall in a
good-enough range (as in the case for our chromatic maze
generator) – satisficing [2].

C. Interpreting Artifacts
Thus far, we have treated the collection of facts describing a

maze as if it were the maze itself. This is a productive mindset
for modeling the design space, but human players will greatly
appreciate a graphical display with literal, colored tiles. As
mazes need not be loaded into any existing game engine, we
were satisfied to create a program that produced colored
ASCII-art in a terminal display.

The mapping from logical terms written as output from the
ASP solver to pictures on the screen is quite straightforward,
so we will not describe the details of the small Python pro-
gram that accomplished this. Instead, we would like to share a
particular change we made to the generator code to support
more flexible interpretation.

During the development of a generator, often viewing arti-
facts as they will be experienced in-game is not enough to
provide useful feedback in the design process. To get a better
idea of the mazes we were generating, we wanted a visualiza-
tion of the shortest-path distances in addition to the literal tile
colors. Instead of producing a specialized debug-visualizer, we
opted to generalize our visualizer to render arbitrary, colored
ASCII-art tables using the following rules:

tile_color(X,Y,C) :- cell(C,X,Y).
tile_char(X,Y,s) :- start(X,Y).
tile_char(X,Y,f) :- finish(X,Y).
tile_char(X,Y, T #mod 10) :-
 T > 0,
 player_at(T,X,Y),
 not start(X,Y),
 not finish(X,Y).
Translating, the above logic describes a table display for

chromatic mazes where s’s and f’s mark the start and finish
and other tiles are represented with the last digit of their dis-
tance from the start (useful for debugging). These single cha-
racters are colored by the corresponding maze tile.

Using this approach, treating the tile_char and tile_color
terms as the primary output of our generator, we were able to
completely reuse our external visualization program in a reim-
plementation of the chess maze design space (with o’s and t’s
for occupied and threatened tiles on the chess board). In actu-
ality, our chromatic maze generator was produced by a series
of small refinements to our chess maze generator: changing
the annotation for tiles, changing the passage criterion be-
tween tiles, and updating the visualization logic, leaving the
general calculation and bounding of shortest-paths and victory
times unmodified during the evolution.

D. Comparison
We have captured the essence of Ashlock’s evolutionary

chromatic maze generator in an ASP-based generator. Our
model encodes the very same design space implicitly defined
by the intent of the evolutionary generator (though what
counts as the actual generative space for an evolutionary gene-
rator is not entirely clear). Where shortest-path length was a
black-box fitness function used in the original system (its im-
plementation was not constrained by the surrounding system),
it is a white-box modeled property of mazes in our system,
subject to directly enforced constraints. In place of explicit

Asking for mazes with
long shortest paths

:- victory_at(T), T<22.

Diorama

Diorama

• Map generator for open-sourced RTS
Warzone 2100

• Maps: heightmaps + cliffs + features

• Predicates available for e.g. raised bases,
defendable oil wells, smooth plains etc.

Runtime of ASP solvers

• In general, the problem of finding an
answer set is NP-complete

• Yes, that means exponential time

• But in practice, it seems to work very fast

• So far...

Other ASP issues

• Combining with optimisation - how can
we get “good enough” content (anytime)
even if optimal content is not available?

• Diversity of generated content

• Multiple objectives

• How can we create adaptive games
(based on player modelling) using

A taxonomy of PCG

• Online/Offline

• Necessary/Optional

• Random seeds/Parameter vectors

• Stochastic/Deterministic

• Constructive/Generate-and-test

Today’s lab:
Answer set

programming

