Lecture 3:
Constructive
Generation Methods for
Dungeons and Levels

Procedural Content Generation, Autumn 2013

Noor Shaker and Antonios Liapis

VVhat makes
a good level?

® | ong!

® Unpredictable?

® Branching?

® Even level of challenge!

® Affords different playing styles?
® Beautiful?

® Realistic!?

® Balanced!?

Thursday, September 12, 13

How could we
generate levels with
these properties!

Simple Roguelike
dungeon generation
algorithms

Binary space partitioning

choose a random direction : horizontal or
vertical splitting

choose a random position (x for vertical, y
for horizontal)

split the dungeon into two sub-dungeons

call the same procedure for each sub-
dungeon until finished

Finally, create a room in each leaf and
connect siblings

Thursday, September 12, 13

Binary space partitioning

dungeon

y S
y \
/ S

Binary space partitioning

dungeon

’ ~
’
’ \\
” -
I gt
PN A

A1 A2 Bl B2

Binary space partitioning

After 4 splitting

Binary space partitioning

Creating the rooms

Binary space partitioning

Adding level-| corridors

Binary space partitioning

Level-2 corridors

Binary space partitioning

The complete dungeon

Procedure

start with the entire dungeon area (root node of the BSP tree)
divide the area along a horizontal or vertical line
select one of the two new partitions
if this partition is above than the minimal acceptable size:
go to step 2 (using this partition as the area to be divided)
select the other partition, and go to step 4
for every partition:
create a room within the partition by randomly
choosing two points (top left and bottom right)
within the partition’s boundaries
9: starting from the lowest layers, draw corridors to connect
rooms in the nodes of the BSP tree with children of the same
parent
10:repeat 9 until the children of the root node are connected

O Joy O s W

Thursday, September 12, 13

Bros vs cons

® Bros:
® casy to implement
® no overlapping rooms or corridors
® casy to create group of rooms

® Cons

® very neat

Thursday, September 12, 13

SEHEZE=Eg T EEgEEEE=
HTHH -un-un-m

X
w@

.." |
T
CH T HH T H A H P

IIIII‘
rorrT

II‘
I-Il..=

TIITITTITTITTIITIIT]

I=I-I.=lllllllllllll.llllll
[T 1T1]
TITIITT
.

[TITT
1T

LI

T ITTIT LI TIITIITIITITT]
(LT 111]

X
srzaszasifissizsiist
EEmE e atasiasiasiasis
CEH R R
cl -
mda

TIITIIT]

Thursday, September 12, 13

Agent-based methods

® | ess predictable

® | ess organized

A highly stochastic
method

l: initialize chance of changing direction Pc=5

2: initialize chance of adding room Pr=5

3: place the digger at a dungeon tile and randomize its direction
4: dig along that direction

5: roll a random number Nc between 0 and 100

6: 1f Nc below Pc:

7 randomize the agent’s direction

8: set Pc=0

9: else:

10: set Pc=Pc+5

ll:roll a random number Nr between 0 and 100

12:1if Nr below Pr:

13: randomize room width and room height between 3 and 7
14: place room around current agent position

14: set Pr=0

15:else:

16: set Pr=Pr+5

17:1if the dungeon is not large enough:

18: go to step 4

Thursday, September 12, 13

Thursday, September 12, 13

Thursday, September 12, 13

Thursday, September 12, 13

Thursday, September 12, 13

Thursday, September 12, 13

Thursday, September 12, 13

Thursday, September 12, 13

Thursday, September 12, 13

Thursday, September 12, 13

Less stochastic method

® Use look ahead to avoid overlaps

® Make few changes in the direction

Thursday, September 12, 13

Procedure

l: place the digger at a dungeon tile

2: set helper variables Fr=0 and Fc=0

3: for all possible room sizes:

3: if a potential room will not intersect existing rooms:

Sl place the room

S5: Fr=1

6: break from for loop

7: for all possible corridors of any direction and length 3 to 7:
8: if a potential corridor will not intersect existing rooms:
9: place the corridor

10: Fc=1

11: break from for loop

12:1if Fr=1 or Fc=1l:
13: go to 2

Thursday, September 12, 13

Less stochastic method

Less stochastic method

'

Cellular automata
HEE HEE EH B N |
v v v v
B [B _
N W oW [
v v v v
: | H _
® Computational paradigm based on local
Interaction

® Used in artificial life and complexity studies

® The value of each cell in iteration n+/ is
based on the value of neighbouring cells in
iteration n and some rule

Thursday, September 12, 13

2D cellular automata

5 x 5 Moore

L neighbourhood
3 x 3 Moore

neighbourhood /

5 cell von [
Neumann
neighbourhood .

Thursday, September 12, 13

Cellular automata for
real-time generation of
infinite cave levels

Lawrence Johnson, Georgios Yannakakis and Julian Togelius

FDG PCG Workshop 2010

This...

® A CA-based algorithm for generating
infinite 2D caves

® simple
® realtime
® |ooks good

® somewhat controllable

Thursday, September 12, 13

The motivation

® Cave Crawler: a cooperative abusive dungeon
crawler

® Never ends - therefore needs to produce
infinite caves...

Thursday, September 12, 13

CA cave generation

® Start with a square grid (e.g. 50*50) - all
floor

® Randomly switch a proportion of cells from
floor to rock

® Run a CA n times, where each cell is set to:
rock: if at least T neighbours are rock
floor: otherwise

® Fill in the interior of rock formations

Thursday, September 12, 13

Core CA mechanic

3 x 3 Moore
neighbourhood

Parameters

® r:initial proportion of rock cells (0.5)
® n: CA iterations (4)

® [:neighbourhood value threshold that
defines a rock (5)

® M:Moore neighbourhood size ()

Thursday, September 12, 13

(a) Random map

Thursday, September 12, 13

Adjacent rooms

® The infinite cave needs to be contiguous -
and you need to be able to turn back!
(Visited rooms stored as random seeds)

® Generate all four neighbours of a new
room

® Dig tunnels from the central room to the
new rooms at the shortest points

® Run the CA m times (2) on all five rooms
together to smooth out edges

Thursday, September 12, 13

>
F " -
Figure 3: A 3 x 3 base grid map generated with CA.

Rock and wall cells are represented by red and white

color respectively. Grey areas represent floor. (M =
2: T =13:n =4;r = 50%)

3 i"ja

Thursday, September 12, 13

Controllable?

Parameters can be varied,
but what do they mean!?

)n=2,M=2T=13 (gn=3, M=2T=13 (h)n=4 M=2T=13

Thursday, September 12, 13

Spelunky

........
- fant ey Qa

® Roguelike-like platformer

® Combines the fast pace of the platformer
with the replayability and unpredictability of

the roguelike

Thursday, September 12, 13

Spelunky level generation

LI JC L]
L JIC JC]
[JC T L]
| .

Each level is divided into a grid of |16 rooms.

Spelunky level generation

N N
— ol e]
R B
N KN R

A path is drawn from entrance at the top
to exit at the bottom.

Spelunky level generation

Each room is selected from a set of templates,
so as to fit in the path drawn in the previous step
(and also with the position in the level).

Thursday, September 12, 13

Spelunky level generation

Randomised chunks in each room add variation.

Spelunky level generation

Finally, critters, traps, treasures etc are added.

Spelunky level generation

0000000011
0060000L11
0000000L11
0000000L11]
0000000L11
0000000011

0000000011
1111111111

The 2010 Mario Al

Championship:Level
Generation Track

Noor Shaker, Julian Togelius, Georgios N.Yannakakis,
Ben Weber, Tomoyuki Shimizu, Tomonori Hashiyama,
Nathan Sorenson, Philippe Pasquier, Peter Mawhorter,

Glen Takahashi, Gillian Smith and Robin Baumgarten
|IEEE TCIAIG, December 201 |

Thursday, September 12, 13

Infinite Mario Bros

® Open-source Java clone of Super Mario
Bros (17 3?)

® Developed by Notch (!)

® |nfinite level generation - but levels are
quite simple

® Developed into the Mario Al Benchmark

Thursday, September 12, 13

Previous work:
player level preferences

o N euro eVOI Uti on ary Level features and rules, playing behavior

preference learning

NS 7
. S
® Player experience NS

model 73-92%

y
A
i
h

-
|
i
ry"}’ 7
i
A
N

".

W
\.

i
A

. (

pliris L4, %)%3 'J:JF'.JJ 21005200 '_'.‘_:!J;JQ:
242 F4 5058 s 2]

=)

Player Experience
R (fun, frustration, anxiety, ...)

010

C. Pedersen, J. Togelius, G. N. Yannakakis., Modeling Player Experience for

ﬂ Content Creation /EEE TCIAG, 2010
i

Thursday, September 12, 13

http://www.bluenight.dk/mario.php
http://www.bluenight.dk/mario.php

The Mario Al
Championship

® Based on different versions of the Mario Al
Benchmark

® Gameplay track: controllers that play as
well as possible

® | earning track: controllers that learn to
play particular levels

® Turing track: controllers that play in a
human-like manner

® | evel generation track: level generators

Thursday, September 12, 13

Level generation track
2010

® Six entries from three continents

® Fach judge played a test level, and two
levels generated by different generators,
and then indicated a preference

® (Generators were provided with
information on how the judge played on
the test level, to allow adaptation

Thursday, September 12, 13

Ben VWeber

® “Probabilistic multi-pass
generator”’ (ProMP)

® A number of passes from left to right
® Adds a new feature every pass

® No adaptation

Thursday, September 12, 13

Weber

LI]

Fig. 1. Passes applied by Ben Weber’s ProMP generator:(1) ground, (2) hills, (3) pipes, (4) enemies, (5) blocks, and (6) coins.

Thursday, September 12, 13

Ben VWeber

® Playability?

This lab

® Get to know the Mario Al framework,
especially the level generation version

® Build a simple level generator (re-
implement any of the described, or do your
own thing)

® Think about the strengths and weaknesses
of your generator

Thursday, September 12, 13

Have you thought
about the course
project yet!?

