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Who are we?

• Noor Shaker: course leader, main lecturer

• Julian Togelius: lectures

• Mark Nelson: lectures

• Yun-Gyung Cheong: lectures

• Anders Hartzen: labs
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This course
• September/October: Lectures on Thursdays 

14.00, followed by labs at 16.00

• November/December: Supervised course 
project (Thursdays at 14)

• Core literature: the PCG book!

• Additional literature: selected research 
papers

• Labs: implementation of key PCG 
algorithms
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Examination

• Report on course project (quality of both 
project and report taken into account)

• To be handed in 17 December

• Oral exam 15/16 January, with questions on 
literature, labs and project
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The project
• Do something cool with PCG!

• Preferably within a game, or at least with a 
clear gameplay angle

• Preferably novel

• At least partly your own implementation

• Groups of 1 or 2 people

• Write a good report! (6 or 8 pages)
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The course web page:
http://blog.itu.dk/
MPGG-E2013/
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Course structure
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What is PCG in games?

• Procedural Generation: with no or limited 
human intervention, algorithmically

• of Content: not NPC behaviour, not the 
game engine, things that affect gameplay

• in Games: computer games, board games... 
any kind of games
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Game content, e.g.

• Levels, tracks, maps, terrains, dungeons, 
puzzles, buildings, trees, grass, fire, plots, 
descriptions, scenarios, dialogue, quests, 
characters, rules, boards, parameters, 
camera viewpoint, dynamics, weapons, 
clothing, vehicles, personalities...
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Elite
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Elite

Fits in memory on a Commodore 64!
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Rogue
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Diablo III
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Dwarf Fortress
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Spelunky
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Far Cry 2
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SpeedTree
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Civilization IV
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Borderlands
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Galactic Arms Race
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Ludi / Yavalath

Thursday, September 5, 13



Sudoku
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The future...
• Can we drastically cut game development 

costs by creating content automatically 
from designers’ intentions?

• Can we create games that adapt their game 
worlds to the preferences of the player?

• Can we create endless games?

• Can the computer circumvent or augment 
limited human creativity and create new 
types of games?
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Example projects from 
the previous three years
• Alistar, van Leeuwen: Infinite TD

• Dart, De Rossi: SpeedRock

• Kastbjerg, Schedl: Direct level adaptation in 
Super Mario Bros

• Hartzen, Justinussen: Compositional PCG

• Kerssemakers, Tuxen: PPLGG

• Borg Cardona: OpenTrumps

• All formed part of published papers!
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Infinite Tower Defense
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Infinite tower defense

• Creep adaptation: creeps are evolutionary 
optimised between each wave, so as to 
optimally fight the existing towers given 
limited resources

• Tower adaptation: tower selection part of 
an interactive evolutionary algorithm

• Path adaptation: difficulty adjusted through 
straightness of path
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Infinite tower defense

Avery, Togelius, Alistar, van Leeuwen: Computational Intelligence and Tower Defence Games. CEC 2011
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SpeedRock:
Procedural rocks through
grammars and evolution

Isaac M. Dart, Gabriele De Rossi and Julian Togelius
IT University of Copenhagen, Denmark

Thursday, September 5, 13



What?

• A tool for generating 3D models of rocks

• Offline

• Exports .OBJ files

• Somewhat controllable
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Figure 5: Skinned rock using high chunkiness value.
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Figure 6: Skinned rock using medium chunkiness
value.

Figure 7: Screen shot of the final tool: SpeedRock
v1.0.
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How?

• 3D L-system subdivision

• Implosion

• Erosion

• Vacuum sealing

• Optimization by evolutionary computation
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3D L-systems

• Cubes: each has one of four colours

• Axiom: an initial set of cubes that occupy 
the entire space of the future rock

• Rules: how to subdivide a cube into eight 
smaller cubes
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3D L-systems

specified by the user [4]. The most common way of using
L-systems for content generation and computational art is
to interpret strings generated by L-system rewriting as in-
structions for a turtle mechanism that draws in 2 or 3 di-
mensions [6]; in contrast, we are here using the 3D structure
resulting from rewriting directly as the “skeleton” for our
rocks.

Each chromosome with the evolutionary algorithm con-
sists of one axiom and four rules.

The SpeedRock chromosome is inspired by L-system gram-
mar, expanded to 3 dimensions. The actual representation
of the L-system rule is a 3 dimensional array of bytes, with
the size of each dimension being 2. This represents a cube
made up of 8 sub-cubes. Each byte value in a sub-cube holds
a value representing another rule, an empty space (rule 0),
or referencing itself.

For evolution to work well, the evolutionary algorithm
needs a large amount of variation within the population.
The population is therefore seeded with uniformly randomly
generated chromosomes.

2.1 3D L-systems
The algorithm we created works by starting with a 3D cu-

bic matrix as the L-system axiom, along with four randomly
generated rules. Figure 1 shows an example 3D Matrix Di-
vision rule set.

Figure 1: A sample ruleset for 3D Matrix division.
The results of a single expansion of a block of each
type (red, green, blue, yellow) is shown.

Figure 2: The results of two expansions of a red
block of the same rule set.

We then rewrite the 3D matrix six times. In each itera-

tion, each cube (cuboid) in the matrix is sub-divided along
their 3 axis into 8 smaller cuboids, reflecting the rule of the
parent cube. We call the approach of expanding the axiom
according to the ruleset “3D matrix division”. Figure 2 il-
lustrates two expansions of one of the sets shown in figure 1.
After each expansion, if a cuboid is set as “Rule 0”, it

is treated as a gap in the rock and invisible, in any other
case where the rule is non-zero it is treated as solid and
interpreted as rock during rendering.
During initial testing of this concept, we found the results

to be interesting, yet the variation in shapes was leaning
towards cubic or triangular structures. The results also in-
dicated that this technique may be suited for creating PGC
Buildings, perhaps some crystalline silicate rocks, and man-
made structures. See figure 3 for examples of structures
created through repeated expansions of random rulesets.

Figure 3: Some structures created through repeated
expansion of random rulesets.

2.2 Rock implosion
After the rewriting/expansion phase, SpeedRock applies

an “implosion” algorithm to the rock, forcing all cubes to
move towards the centre of the cube until no internal empty
space exists. Implosion works by repetitively searching through
the expanded 3 dimensional rock and upon finding an empty
space between a brick and the current center plane, pulling
the brick into the emprty space. The 3 center planes, one
for each dimension, run along the centre of the particular
dimension being operated on. This method is entirely de-
terministic.
See figure 4 for examples of structures created through

expansion of random rulesets followed by implosion. In the
eyes of the designers, the imploded structures look less man-
made than the correspinding unimploded structures.

2.3 Rock evolution
The variability of structures attained through the simple

expansion and implosion processes described here is quite
considerable, suggesting that the underlying representation
of four rules and an axiom is well suited for evolutionary
search. In SpeedRock, the user controls the generation chiefly
through specifying parameters for the fitness function.
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Random ruleset 
expansion
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Rock implosion

• After rewriting/expansion: implosion

• All cubes are moved toward center (x, y, z) 
if free space exists

• Repeat as long as possible
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Random ruleset 
expansion + implosion

Figure 4: Some structures created through repeated
expansion of random rulesets followed by implosion.

In initial experiments, a pre-existing shape and mesh was
used as an input, with the fitness function analysing the
di�erence between it and the candidate rock to determine
its fitness. After further consideration, we decided that us-
ing a known shape would restrict creativity too much, and
the requirement of having a “target mesh” would also place
unnecessary demands on the user.

In the current version the user specifies the desired di-
mensions of the generated rock, getting an x:y:z ratio. For
example, a flat stone would have a low y value, and higher
z and x values, such as 5:1:4. The fitness function is simply
defined as 1�d, where d is the average normalised di�erence
between desired and actual ratio in all dimensions.

Additionally, we decided to let the user specify some gen-
eral criteria about the type of rock that they want before
examining the fittest results. These criteria are are:

• Chunkiness value (size of each cuboid)

• Shape of individual cuboids: cubic / spherical

• Stochastic erosion percentage.

• Whether to implode the rock or not

The following evolutionary algorithm was used:

• Population size: 200

• Rank-based roulette wheel selection, where each gene
gets the same number of wheel places as its ranking in
descending order (i.e. fittest gene gets 200 places)

• One-Point random crossover.

• Mutation rate: 0.5% chance / rule

• Mutation: Chose a random cuboid within a rule. If
cuboid is empty: flip it to a random rule. If cuboid is
not empty: set it to empty.

We hypothesised that it would take longer to evolve a
rock where fitness was determined after implosion or erosion.

After running multiple simulations and finding the average
fittest in each generation over 25 generations, we found little
di�erence between methods. The algorithm automatically
stops when no progress has been observed for the last few
generations (usually after about ten generations).

2.4 Rock erosion
Erosion is an optional feature (the amount of erosion can

be controlled with a slider between 0 and 100%) which is
applied to the structure after evolution. The algorithm is
inspired by [5] and resembles a one-step cellular automaton.
The number of neighbours for each cuboid is calculated, and
the probability of deleting the cuboid depends on the num-
ber of neighbours (45% if 4 neighbours, 65% if 3 etc) multi-
plied by the overall erosion amount.

2.5 Turning rock to mesh
Once the basic rock skeletal structure is evolved, it is con-

verted into a mesh in order to be a exportable to a standard
3D file format. As the saying goes, there are many ways
to skin a cat, and skinning a rock is no exception to this.
Techniques we considered ranged from finding the centre of
all cuboids and looking at the nearest neighbours to using
external tools such as Autodesk and Blender.
The approach we settled on was to place the evolved rock

“skeleton” inside a large sphere. We then iterate through
each vertex on the sphere’s perimeter and cast a ray to-
wards the very centre of the sphere. Once the ray hits the
rock skeleton we move the current vertex onto the hit loca-
tion and add a small amount of displacement noise to the
position. An analogy to this would be vacuum sealing a rock
by putting it into a plastic bag and removing the air.
Finally, once all vertexes on the sphere’s surface have been

wrapped over the skeletal structure, we recalculate the nor-
mals of each surface. To give a sense of the kind of rocks
produced by SpeedRock, figures 5 and 6 show two rocks that
have been evolved with di�ering chunkiness values.

3. THE TOOL
Figure 7 shows a screenshot of the final tool, SpeedRock

1.0. The various options for the generator are available from
a graphical user interface, as is an option to export the rock
as an OBJ file for import into e.g. 3DStudio Max.

4. CONCLUSIONS
We have described a method for generating diverse and

believable rocks using a combination of L-systems, evolution
and an implosion mechanism. The method is embedded in
a standalone tool which can export generated assets in a
format suitable for modern game production pipelines. No
user tests have been performed, but we believe the rocks we
have generated to be reasonably believable. We believe that
the direct usage of 3D L-systems is novel in the context of
game content generation, and also that the implosion mech-
anism, while not an advanced feature in itself, has not been
combined with structures resulting from grammar rewriting.

Acknowledgments
This research was supported in part by the Danish Research
Agency project “Adaptive Game Content Creation using
Computational Intelligence” (AGameComIn, 274-09-0083).

Thursday, September 5, 13



Erosion

• One-step “cellular automaton”

• Calculate number of neighbours of cube 
(max 26)

• Probability of deleting cube: 45% if  4 
neighbours, 65% if 3 etc.
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Skinning by
vacuum sealing

• A sphere mesh is created around the rock

• For each mesh vertex, cast a ray to the 
center

• Move the sphere to where it intersects 
with a cube
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Finding rules

• Evolutionary algorithm

• Fitness function: correspondence between 
shape and specified dimensions
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Examples

Figure 5: Skinned rock using high chunkiness value.
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Direct level generation 
in Infinite Mario Bros

Emil Kastbjerg and David Schedl
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Offline version

• The player plays a simple hand-crafted level

• All of the player’s actions are recorded

• The recorded actions are used to create 
the next level

• All level edits are local: at the place in the 
level where the event took place
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Generation rules

• Jump button pressed: block is created 
above

• Jump button released: ground raised/
platform created

• Speed/fire pressed: enemy created
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Online version

• All edit actions are instantaneous
(and still local)

• Extra rules to balance the level process: 
enemies created when coins collected, 
coins created when enemies killed
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Compositional PCG

• Anders Hartzen and Tróndur Justinussen

• Combining evolution with answer set 
programming

• Evolving parameters for ASP programs that 
generate mazes
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A procedural procedural 
level generator generator

• Manuel Kerssemakers and Jeppe Tuxen 

• Interactive evolution of agent-based Mario 
level generators
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– place a platform/line of specified tiles and size at
position

– place a cross of specified tiles and size at position
– place or remove specified tiles in a specified area

according to the rules of Conway’s “Game of
Life” [15].

The core loop of the agent is very simple, as almost all
of the intelligence depends on the logic specified by the
parameters above. Every tick, each active agent first moves,
then checks whether it has to react to level boundaries.
Then it checks whether its action is triggered and if so, it
performs its action. Each time an action is performed, the
agent consumes a token; it continues until it has run out of
tokens.

V. OUTER GENERATOR

The inner generators are parameterised (or, depending
on your perspective, generated) by the outer generator. As
described below, this is an interactive genetic algorithm
where the user makes the ultimate quality judgment but is
aided by simulated play-through for quality checking.

A. Interactive genetic algorithm

The genetic algorithm keeps a population of 10 individ-
uals. Each individual is a level generator, and is simply
represented as a list of its constituent agents. The agents, in
turn, are represented by the values of all their parameters,
as described above. Each generation, it displays all 12
individuals to the user, and the user chooses one or more
individuals to form the basis of the next generation. When the
user chooses to move on to the next generation, an entirely
new population is generated based on mutation and crossover
of the selected parents.

As mentioned above, the users are aided in their decisions
about which levels to select as parents by being able to
experience them in several forms: as a cloud visualisation, as
visualisations of individual generated levels, through playing
individual levels, and through a playability rating. Figure 2
shows a level as represented in the individual level view,
and how a small slice of it looks in the game view. The
playability rating is calculated automatically by the program
through sampling ten levels from each generator, and letting
an AI try to play them to completion. In this version of
the generator, we use Robin Baumgarten’s Mario-playing
agent, which won the 2009 Mario AI competition and is
based on searching the state space of the game with A*. The
playability ratio is simply defined as the average proportion
of the ten levels that the agent manages to clear before dying.
It is perfectly possible, and perhaps desirable (though this is
up to the user), for a level generator to have a playability
rating of 1.

Initial testing revealed a problem in that a large proportion
of completely randomly initialised generators only generate
levels that are neither playable nor interesting. Furthermore,
in a population of 10 randomly initialised level generators
some agent types might be missing altogether, for example
there might not be any agents that add coins or there might

= = = =

Fig. 2. A single generated level, and a small part of the same level in the
game view.

be no agents that draw platforms to stand on in the second
half of the level. This means that there might not be enough
good genetic material in the first generation to get evolution
started, as long as evolutionary runs are completely randomly
seeded.

We therefore introduced an initialisation step, to ensure
a reasonably high playability ratio for the initial genera-
tors. Unlike in the interactive GA this process of finding
suitable candidates for the database is done offline and is
non-interactive. To filter out a suitable generator the GA
evaluates fitness of a randomly seeded generator by playing
three of its levels and then returning the average traversed
horizontal distance among the play-throughs, representing
playability. After the evaluation step it applies tournament
selection to determine parents and uses the mutation (50%)
and crossover (90%) operators to produce a new population.
The algorithm returns a level generator whenever one is
found that produces only playable levels, or after a specified
number of generations (100). This generator is then added
to the database selectable for use as a starting point for
the interactive GA. Figure 3 shows the generators that were
created in the initialisation step of an example run.

B. Mutation and crossover

Crossover of two generators is defined as follows. A
random number between 0 and 1, r, is determined. then
r⇤size of parent1 agents are picked randomly from parent
1, and (1 � r) ⇤ size of parent2 agents are picked at
randomly from parent 2. Together these agents make up
the new generator. No cross-over is done between agents
themselves, since generators need to swap features and
features are mainly recognised as entire agents.

Mutation changes one of the agents by shifting all at-
tributes by a small amount. Mutation of a generator can also
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Fig. 3. The database of initial content generators (cloud view).

add a new agent or remove a randomly chosen agent. The
results of the crossover and mutation operators are visualised
in figure 4

VI. EVALUATION

This section reports on informal self-evaluation of the
system and associated tool by the designers.

A. User experience

Searching a large space by stochastic methods usually
involves a very large number of evaluations. This is a
problem for interactive evolution, as human evaluation of
candidate artefacts takes time and effort, and humans have a
limited attention span. The problem of users losing interest
in partaking in the evolutionary process after a number of
generations is called user fatigue. In the current system we
have tried to circumvent user fatigue with the initialisation
process, which ensures a high playability rate of every
generator saved in the database. This way users can start
working with their preferences right away, instead of having
to select for playability.

Based on our own experience of the system, we consider
this approach to have succeeded given the broad design goal
that it should be easy for a user to generate playable and
interesting levels. However, for a user looking to create a
generator that creates some specific level feature, it can still
take many generations before that goal is achieved, if ever.

Most importantly, we felt in control in the selection pro-
cess. This is partly because of its high level of transparency:
when comparing parents and their off springs it is very clear
from which parent each feature comes from.

Offspring

Selected Parents

Fig. 4. Offspring, generated from three parents by recombination and
mutation. (All generators shown in cloud view.)

B. Diversity of generated levels

The amount of variability between levels differs from
generator to generator: some generators seem to produce
essentially the same level with minor variations, others
generate levels that look completely different from each other
in the game view, while retaining a common “theme” or
“style”. (From the higher-level inspector view it is almost
always easy to see which levels are created by the same
generator.) This variance is mostly due to the variance in the
agent spawn radius. This attribute states in which radius from
its starting position an agent may be spawned. A high value
means that levels from that generator will be more different
locally. Figure 5 shows an example of the same area in four
different levels from the same generator, and discusses their
similarities.

Within the same level, one can likewise often see large
differences between different parts. This is due to that some
agents are only active within part of a level, depending on
the starting position, number of tokens and movement logic.
Different levels generated by the same generator usually
show the same differences between parts; for example, one
generator might generate levels that all have many more coins
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A taxonomy of PCG

• Online/offline

• Necessary/optional

• Random seed/parameter vector

• Generic/adaptive

• Stochastic/deterministic

• constructive/generate-and-test

• Algorithmic/mixed-authorship
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Online/Offline

• Online: as the game is being played

• Offline: during development of the game
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Necessary/Optional

• Necessary content: content the player 
needs to pass in order to progress

• Optional content: can be discarded, or 
bypassed, or exchanged for something else
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Stochastic/
Deterministic

• Deterministic: given the same starting 
conditions, always creates the same content

• Stochastic: the above is not the case
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Random seeds/
Parameter vectors

• a.k.a. dimensions of control

• Can we specify the shape of the content in 
some meaningful way?
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Constructive/
Generate-and-test

• Constructive: generate the content once 
and be done with it

• Generate-and-test: generate, test for 
quality, and re-generate until the content is 
good enough
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Generic/adaptive

• Generic: for all types of players

• Adaptive: the content changes according to 
player behaviour
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Algorithmic/mixed 
authorship

• Algorithmic: designer tweaks the algorithm 
parameters

• mixed-authorship: richer designer input
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