
Lecture 2:
Search-based PCG

Procedural Content Generation 2013
Julian Togelius

Thursday, September 5, 13



What are the problems?
• Speed

Real-time? Or design-time?

• Reliability
Catastrophic failures break gameplay

• Controllability
Allow specification of constraints and goals

• Diversity
Content looks like variations on a theme

• Creativity
Content looks “computer-generated”

Thursday, September 5, 13



A taxonomy of PCG

• Online/Offline

• Necessary/Optional

• Random seeds/Parameter vectors

• Stochastic/Deterministic

• Constructive/Generate-and-test

Thursday, September 5, 13



Online/Offline

• Online: as the game is being played

• Offline: during development of the game

Thursday, September 5, 13



Necessary/Optional

• Necessary content: content the player 
needs to pass in order to progress

• Optional content: can be discarded, or 
bypassed, or exchanged for something else

Thursday, September 5, 13



Stochastic/
Deterministic

• Deterministic: given the same starting 
conditions, always creates the same content

• Stochastic: the above is not the case

Thursday, September 5, 13



Random seeds/
Parameter vectors

• a.k.a. dimensions of control

• Can we specify the shape of the content in 
some meaningful way?

Thursday, September 5, 13



Constructive/
Generate-and-test

• Constructive: generate the content once 
and be done with it

• Generate-and-test: generate, test for 
quality, and re-generate until the content is 
good enough

Thursday, September 5, 13



The Search-based 
Paradigm

• A special case of generate-and-test:

• The test function returns a numeric 
fitness value (not just accept/reject)

• The fitness value guides the generation of 
new candidate content items

• Usually implemented through evolutionary 
computation

Thursday, September 5, 13



Evolutionary 
computation?

• Keep a population of candidates

• Measure the fitness of each candidate

• Remove the worst candidates

• Replace with copies of the best (least bad) 
candidates

• Mutate/crossover the copies

Thursday, September 5, 13



Thursday, September 5, 13



And of course,
the algorithm!

• Lots of different types of evolutionary 
algorithms: Genetic Algorithms, Evolution 
Strategies, Evolutionary Programming

• And evolution-like algorithms: Particle 
Swarm Optimisation, Differential Evolution

• Keep It Simple, Stupid!

• Often, simple μ+λ ES with no crossover 
and no self-adaptation works well enough

Thursday, September 5, 13



Simple μ+λ ES
• Create a population of μ+λ individuals

• Each generation

• Evaluate all individuals in the population

• Sort by fitness

• Remove the worst λ individuals

• Replace with mutated copies of the μ 
best

Thursday, September 5, 13



The fitness landscape

Thursday, September 5, 13



Locality
• The extent to which magnitude of changes 

in fitness correlate with magnitude of 
changes in genotype

• A good thing!

• Avoid: all small changes cause catastrophic 
fitness drops

• Depends on representation and fitness 
function

Thursday, September 5, 13



Issues in
search-based PCG

• Content representation and search space

• Direct or indirect?

• Fitness function

• Direct, simulation-based, interactive?

Thursday, September 5, 13



Representing a dungeon
• Directly: grid

• More indirectly: position and 
orientation of walls

• Even more indirectly: patterns 
of walls and floor

• Very Indirectly: number of 
rooms and doors

• Indirectly: random seed

C
os
t

C
on
tro
l/L
oc
al
ity

Thursday, September 5, 13



Evaluation functions

• Direct

• Simulation-based

• Interactive

Thursday, September 5, 13



An example: Ludi

• Evolves complete board games

• Games represented in a game description 
language

• Simulation-based fitness function (the 
games are played, various features of 
gameplay are measured)

• Produced a commercially published game!

Thursday, September 5, 13



Thursday, September 5, 13



Procedural map 
generation for RTS

J.	
  Togelius,	
  M.	
  Press,	
  N.	
  Beume,	
  S.	
  Wessing,	
  J.Hagelbäck,	
  and	
  G.	
  N.	
  
Yannakakis.,	
  Multiobjective Exploration of the StarCraft Map Space, 
IEEE	
  CIG	
  2010	
  

Thursday, September 5, 13



Procedural map 
generation for RTS

• Representation:

• Locations of bases and resources (radial)

• Locations, sizes of hills

• Turtle-like procedure for StarCraft walls

• Fitness functions: base space, resource 
distance, choke points, resource balance...

Thursday, September 5, 13



Towards
Automatic Personalized 
Content Creation for 

Racing Games
Julian Togelius, Renzo De Nardi and Simon M. Lucas

IEEE CIG 2007

Thursday, September 5, 13



Evolving racing tracks

1. Representation: b-splines

2. Mutation: randomly perturbing parameters

3. Fitness function: based on a player model

Thursday, September 5, 13



Fitness function

• Players drive on a 
test track

• Neural networks 
learn to replicate 
their driving styles

• New tracks are 
tested with these 
neural networks Fig. 2. The test track and the car.

First of all, we design a test track, featuring a number of
different types of racing challenges. The track, as pictured
in (fig), has two long straight sections where the player can
drive really fast (or choose not to), a long smooth curve,
and a sequence of nasty sharp turns. Along the track are 30
waypoints, and when a human player drives the track, the
way he passes each waypoint is recorded. What is recorded
is the speed of the car when the waypoint is passed, and the
orthogonal deviation from the path between the waypoints,
i.e. how far to the left or right of the waypoint the car passed.
This matrix of two times 30 values constitutes the raw data
for the player model.

The actual player model is constructed using the Cascad-
ing Elitism algorithm, starting from a general controller and
evolving it on the test track. Three fitness functions are used,
based on minimising the following differences between the
real player and the controller: f1: total progress (number of
waypoints passed within 1500 timesteps), f2: speed at which
each waypoint was passed, and f3: orthogonal deviation was
passed. The first and most important fitness measure is thus
total progress difference, followed by speed and deviation
difference respectively.

D. Results
In our experiments, five different players’ driving was

sampled on the test track, and after 100 generations of
the Cascading Elitism algorithm with a population of 100,
controllers whose driving bore an acceptable degree of
resemblance to the modelled humans had emerged. The
total progress varied considerably between the five players
- between 1.31 and 2.59 laps in 1500 timesteps - and this
difference was faithfully replicated in the evolved controllers,
which is to say that some controllers drove much faster than
others. Progress was made on the two other fitness measures
as well, and though there was still some numerical differ-
ence between the real and modelled speed and orthogonal
deviation at most waypoint passings, the evolved controllers
do reproduce qualitative aspects of the modelled players’
driving. For example, the controller modelled on the first

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fi
tn

es
s 

(p
ro

ge
ss

, s
pe

ed
)

0 10 20 30 40 50
−11

−10.5

−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

Generations

Fi
tn

es
s 

(o
rth

og
on

al
 d

ev
ia

tio
n)

speed
progress
orthogonal deviation

Fig. 3. Evolving a controller to model a slow, careful driver.

0 10 20 30 40 50

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Fi
tn

es
s 

(p
ro

ge
ss

, s
pe

ed
)

0 10 20 30 40 50
−11

−10.5

−10

−9.5

−9

−8.5

−8

−7.5

−7

Generations

Fi
tn

es
s 

(o
rth

og
on

al
 d

ev
ia

tio
n)

speed
progress
orthogonal deviation

Fig. 4. Evolving a controller to model a good driver. The lack of progress on
minimising the progress difference is because the progress of the modelled
driver is very close to that of the generic controller used to initialise the
evolution.

author drives very close to the wall in the long smooth
curve, very fast on the straight paths, and smashes into the
wall at the beginning of the first sharp turn. Conversely, the
controller modelled on the anonymous and very careful driver
who scored the lowest total progress crept along at a steady
speed, always keeping to the center of the track.

V. TRACK EVOLUTION

Once a good model of the human player has been acquired,
we will use this model to evolve new, fun racing tracks for
the human player. In order to do this, we must know what
it is for a racing track to be fun, how we can measure this
property, and how the racing track should be represented
in order for good track designs to be in easy reach of the
evolutionary algorithm. We have not been able to find any
previous research on evolving tracks, or for that sake any sort
of computer game levels or environments. However, Ashlock

Thursday, September 5, 13



Fitness function

• Loosely adapted from Thomas Malone’s 
theory of player entertainment

• Based on how the trained neural network 
drives on the new track

• Progress (not too much or too little)

• Progress (variation between trials)

• Speed (variation within a lap)

Thursday, September 5, 13



Evolved tracks

The collision detection in the car game works by sampling
pixels on a canvas, and this mechanism is taken advantage
of when the b-spline is transformed into a track. First thick
walls are drawn at some distance on each side of the b-
spline, this distance being either set to 30 pixels or subject
to evolution depending on how the experiment is set up. But
when a turn is too sharp for the current width of the track,
this will result in walls intruding on the track and sometimes
blocking the way. The next step in the construction of the
track is therefore “steamrolling” it, or traversing the b-spline
and painting a thick stroke of white in the middle of the
track. Finally, waypoints are added at approximately regular
distances along the length of the b-spline. The resulting track
can look very smooth, as evidenced by the test track which
was constructed simply by manually setting the control points
of a spline.

D. Initialisation and mutation

In order to investigate how best to leverage the representa-
tional power of the b-splines, we experimented with several
different ways of initialising the tracks at the beginning
of the evolutionary runs, and different implementations of
the mutation operator. Three of these configurations are
described here.

1) Straightforward: The straightforward initial track
shape forming a rectangle with rounded corners. Each mu-
tation operation then perturbs one of the control points by
adding numbers drawn from a gaussian distribution with
standard deviation 20 pixels to both x and y axes.

2) Random walk: In the random walk experiments, mu-
tation proceeds like in the straightforward configuration, but
the initialisation is different. A rounded rectangle track is
first subject to random walk, whereby hundreds of mutations
are carried out on a single track, and only those mutations
that result in a track on which a generic controller is not
able to complete a full lap are retracted. The result of such a
random walk is a severely deformed but still drivable track.
A population is then initialised with this track and evolution
proceeds as usual from there.

3) Radial: The radial method of mutation, starts from an
equally spaced radial disposition of the control points around
the center of the image; the distance of each point from
the center is generated randomly. Similarly at each mutation
operation the position of the selected control point is simply
changed randomly along the respective radial line from the
center. Constraining the control points in a radial disposition
is a simple method to exclude the possibility of producing
a b-spline containing loops, therefore producing tracks that
are always fully drivable.

E. Results

We evolved a number of tracks using the b-spline rep-
resentation, different initialisation and mutation methods,
and different controllers derived using the indirect player
modelling approach.

Fig. 5. Track evolved using the random walk initialisation and mutation.

Fig. 6. A track evolved (using the radial method) to be fun for the first
author, who plays too many racing games anyway. It is not easy to drive,
which is just as it should be.

1) Straightforward: Overall, the tracks evolved with the
straightforward method looked smooth, and were just as easy
or hard to drive as they should be: the controller for which the
track was evolved typically made a total progress very close
to the target progress. However, the evolved tracks didn’t
differ from each other as much as we would have wanted.
The basic shape of a rounded rectangle shines through rather
more than it should.

2) Random walk: Tracks evolved with random walk ini-
tialisation look weird and differ from each other in an
interesting way, and so fulfil at least one of our objectives.
However, their evolvability is a bit lacking, with the actual
progress of the controller often quite a bit from the target
progress and maximum speed low.

Fig. 7. A track evolved (using the radial method) to be fun for the second
author, who is a bit more careful in his driving. Note the absence of sharp
turns.

3) Radial: With the radial method, the tracks evolve rather
quickly and look decidedly different depending on what
controller was used to evolve them, and can thus be said
to be personalised. However, there is some lack of variety in
the end results in that they all look slightly like flowers.

4) Comparison with segment-based tracks: It is interest-
ing to compare these tracks with some tracks evolved using
the segment-based representation from our previous paper.
Those tracks do show both the creativity evolution is capable
of and a good ability to optimise the fitness values we define.
But they don’t look like anything you would want to get out
and drive on.

VI. DISCUSSION

We believe the method described in this paper holds great
promise, and that our player modelling method is good
enough to be usable, but that there is much that needs to
be done in order for track evolution to be incorporated in
an actual game. To start with, the track representation and
mutation methods need to be developed further, until we
arrive at something which is as evolvable and variable as
the segment-based representation but looks as good as (and
is closed like) the b-spline-based representation.

Further, the racing game we have used for this investiga-
tion is too simple in several ways, not least graphically but
also in its physics model being two-dimensional. A natural
next step would be to repeat the experiments performed here
in a graphically advanced simulation based on an suitable
physics engine, such as Ageia’s PhysX technology [19]. In
such a simulation, it would be possible to evolve not only the
track in itself, but also other aspects of the environment, such
as buildings in a city in which a race takes place. This could
be done by combining the idea of procedural content creation
[20][21] with evolutionary computation. Another exciting
prospect is evolving personalised competitors, building on

the results of our earlier investigations into co-evolution in
car racing [10].

In the section above on what makes racing fun, we
describe a number of potential measures of entertainment
value, most of which are not implemented in the experiments
described here. Defining quantitative versions of these mea-
sures would definitely be interesting, but we believe it is more
urgent to study the matter empirically. Malone’s and Koster’s
oft-cited hypotheses are just hypotheses, and as far as we
know there are no psychological studies that tell us what
entertainment metric would be most suitable for particular
games and types of player. Real research on real players is
needed.

Finally we note that although we distinguished between
different approaches to computational intelligence and games
in the beginning to this paper, many experiments can be
viewed from several perspectives. The focus in this paper
on using evolutionary computation for practical purposes
in games is not at all incompatible with using games for
studying under what conditions intelligence can evolve, a
perspective we have taken in some of our previous papers.
On the contrary.

VII. ACKNOWLEDGEMENTS

Thanks to Owen Holland, Georgios Yannakakis, Richard
Newcombe and Hugo Marques for insightful discussions.

REFERENCES

[1] G. Kendall and S. M. Lucas, Proceedings of the IEEE Symposium on
Computational Intelligence and Games. IEEE Press, 2005.

[2] P. Spronck, “Adaptive game ai,” Ph.D. dissertation, University of
Maastricht, 2005.

[3] I. Tanev, M. Joachimczak, H. Hemmi, and K. Shimohara, “Evolution
of the driving styles of anticipatory agent remotely operating a scaled
model of racing car,” in Proceedings of the 2005 IEEE Congress on
Evolutionary Computation (CEC-2005), 2005, pp. 1891–1898.

[4] B. Chaperot and C. Fyfe, “Improving artificial intelligence in a
motocross game,” in IEEE Symposium on Computational Intelligence
and Games, 2006.

[5] J. Togelius and S. M. Lucas, “Evolving controllers for simulated car
racing,” in Proceedings of the Congress on Evolutionary Computation,
2005.

[6] ——, “Evolving robust and specialized car racing skills,” in Proceed-
ings of the IEEE Congress on Evolutionary Computation, 2006.

[7] K. Wloch and P. J. Bentley, “Optimising the performance of a
formula one car using a genetic algorithm,” in Proceedings of Eighth
International Conference on Parallel Problem Solving From Nature,
2004, pp. 702–711.

[8] D. Cliff, “Computational neuroethology: a provisional manifesto,” in
Proceedings of the first international conference on simulation of
adaptive behavior on From animals to animats, 1991, pp. 29–39.

[9] D. Floreano, T. Kato, D. Marocco, and E. Sauser, “Coevolution of
active vision and feature selection,” Biological Cybernetics, vol. 90,
pp. 218–228, 2004.

[10] J. Togelius and S. M. Lucas, “Arms races and car races,” in Proceeding
of Parallel Problem Solving from Nature. Springer, 2006.

[11] D. A. Pomerleau, “Neural network vision for robot driving,” in The
Handbook of Brain Theory and Neural Networks, 1995.

[12] J. Togelius, R. D. Nardi, and S. M. Lucas, “Making racing fun through
player modeling and track evolution,” in Proceedings of the SAB’06
Workshop on Adaptive Approaches for Optimizing Player Satisfaction
in Computer and Physical Games, 2006.

[13] D.-A. Jirenhed, G. Hesslow, and T. Ziemke, “Exploring internal
simulation of perception in mobile robots,” in Proceedings of the
Fourth European Workshop on Advanced Mobile Robots, 2001, pp.
107–113.

Thursday, September 5, 13



Evolved tracks

evolutionary selection can be seen to guarantee the top speed not to be dropped
in favour of the other fitnesses.

In figure 3 are displayed three tracks that evolution tailored on the player
model of two of the authors; track ((a)) is evolved for a final progress of 1.1
(since the respective human player was not very skilled), track (b) and (c) are
instead evolved on a model of a much skilled player for final progress 1 1.5. For
track (a) and (b) all the three fitness measure were used, while for track (c) only
progress fitness was used.

The main difference between tracks (a) and (b) is that track (a) is broader
and has fewer tricky passages, which makes sense as the player model used to
evolve (a) drives slower. Both contain straight paths that allow the controller to
achieve high speeds. In track (b) we can definitely notice the presence of narrow
passages and sharp turns, elements that force the controller to reduce speed
but only sometimes causes the car to collide. Those elements are believed to
be the main source of final progress variability. These features are also notably
absent from track c, on which the good player model has very low variability.
The progress of the controller is instead limited by many broad curves.

Fig. 3. Three evolved tracks: ((a)) evolved for a bad player with target progress 1.1,
(b) evolved for a good player with target fitness 1.5, (c) evolved for a good player with
target progress 1.5 using only progress fitness.

7 Conclusions

We have shown that we can evolve tracks that, for a given controller, will yield a
predefined progress for the car in a given time, while maximizing the maximum
1 The target progress is set between 50 and 75 percent of the progress achievable by

the specific controller in a straight path. As a comparison, in Formula 1 races this
ratio (calculated as ratio between average speed and top speed) is about 70 percent,
and for the latest Need for Speed game it is between 50 and 60 percent.

Thursday, September 5, 13



Evolving Content in the 
Galactic Arms Race 

Video Game
Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley

IEEE CIG 2009

Thursday, September 5, 13



Main idea

• Provide an infinite amount of content to 
players in a massively multiplayer game 

• increasing replay value

• decreasing development cost

• Find appropriate content for each player

• Let players themselves affect the content 
generation

Thursday, September 5, 13



Galactic Arms Race

• Third person space shooter

• Massively multiplayer (about 1000 people)

• Both NPC and human enemies

• Weapons spread out in space

• Several weapons can be kept by the player

• Using a weapon = increasing its fitness

Thursday, September 5, 13



Galactic Arms Race

Fig. 2. Galactic Arms Race. Players in GAR pilot their space ship (screen
center) from a third person perspective. This picture demonstrates a player
destroying enemies with an evolved corkscrew-shaped weapon. Left of the
player ship is a weapon pickup dropped from a destroyed enemy base.
A particle system preview emits from the weapon pickup (i.e. “neuralium
isotope,” left of player) to visually indicate how the weapon will function
before the player picks it up. GAR is designed to look and feel like a near-
commercial quality video game to effectively demonstrate the potential of
automatic content generation in mainstream games.

[28]), users never explicitly communicate to the system
which content they like. Instead, the preferred content is de-
duced by the system implicitly from natural human behavior.
That is, users do not need to know that they are interacting
with an evolutionary algorithm yet evolution still works
anyway. Unlike regular NEAT, speciation is not necessary
because users determine what is popular and the diversity
of the population reflects the diversity of user preferences.
Finally, every step of the cgNEAT algorithm is asynchronous.
At any time players may cause content to join the population
or be eliminated.
The next section details how cgNEAT is applied in practice

to evolving weapons in the Galactic Arms Race video game.

IV. GALACTIC ARMS RACE (GAR)
In GAR (figure 2), the goal is to pilot a space ship to defeat

enemies, gain experience, earn money, and most importantly,
to find advantageous new weapons that are automatically
generated by cgNEAT. GAR is intentionally designed to look
and feel like a near-commercial quality video game so that
it can convincingly demonstrate the promise of automatic
content generation for mainstream games. To reach that level
of quality, it took over a year to build by a nine-member
mostly student team.
GAR is available online http://gar.eecs.ucf.edu. The game

is a full multiplayer Internet platform in which servers evolve
weapons based on the aggregate usage of all players online.
However, this initial paper focuses on GAR’s single-player
mode, in which evolution is directed by the actions of a single
player battling NPC aliens in the game, which are controlled
by scripted steering behaviors [29] and the BOIDS algorithm
[30].
Every weapon found in GAR is unique and players can

continually find novel weapons with characteristics evolved

from those weapons players favored in the past. It is impor-
tant to note that weapons evolved in GAR all fire particle
bursts with the same strength and number. Thus it is not
sheer power that is evolving, but rather the pattern in which
particles spray from the gun, which has complex tactical
implications. Therefore, the space of weapons is not a total
order from worst to best, but rather a complex multi-objective
coevolutionary landscape.
Players are limited to three weapon slots, each of which

holds a single weapon. Destroyed enemies and enemy bases
may drop a weapon pickup that contains a novel weapon
evolved by cgNEAT. Players choose in which weapon slot
to place the new weapon, but doing so discards the existing
weapon in that slot. Thus players must be selective about
which weapons to keep. In this context, an important goal for
any game that generates unpredictable content is to indicate
what that content will be like before it is taken. To give
players an idea of how a weapon functions before picking it
up, weapon pickups emit a miniature particle system preview
that behaves exactly as the actual weapon does. In the game
this preview is called a neuralium isotope (figure 2, left side).
The remainder of this section details the integration of

cgNEAT in GAR, including (1) CPPN representation, (2)
calculating weapon fitness, (3) evolving new weapons, and
(4) starter weapons and the spawning pool.

A. Particle System Weapon CPPNs
Particle system CPPNs in GAR are based on the tech-

niques developed in NEAT Particles and NEAT Projectiles
[26]. Each player weapon contains a single evolved CPPN
(figure 3). Every frame of animation, each particle issued
from the weapon inputs its current position relative to the
ship (p

x

, p
z

) and distance from the ship (d
c

) into the CPPN.
There are two, rather than three, spatial inputs because the
game is entirely situated on the y = 0 plane. The CPPN
is activated and outputs the particle’s velocity (v

x

, v
z

) and
color (r, g, b) for that animation frame. Representing particle
velocity and color in this manner produces a wide of variety
of vivid patterns [26].

B. Calculating Weapon Fitness
Because it would disrupt the gameplay experience to query

the player’s opinion of every piece of content, weapon fitness
is automatically calculated based on usage statistics. Players
possess up to three weapons at one time. When a player
fires a weapon, that weapon (which is a unique member
of the population) gains fitness at a constant rate and the
other weapons in that player’s arsenal lose fitness at the same
rate. There is no maximum fitness and the minimum fitness
is 1.0. This fitness decay mechanism for unused weapons
emphasizes emerging new weapon trends.

C. Evolving New Weapons
When players destroy an enemy base or a boss enemy, a

new weapon is spawned either through reproduction within
the current population or from the spawning pool. Any novel
weapon created by cgNEAT is evolved from the current

Thursday, September 5, 13



Weapon selection

• One global population!

• New “individuals” can be picked up and/or 
discarded by players

• More used weapons get higher fitness, are 
used for reproduction

• Complicated EA: niching, innovation 
preservation etc.

Thursday, September 5, 13



Weapon representation

• Particle systems

• Evolved neural network (NEAT) maps 
relative particle position to velocity and 
color

Thursday, September 5, 13



(a)

�
�

�
�

�
� ���	



�



�

� � �


����������	
�����������
��
�������������

(b)
Fig. 3. How CPPNs Represent Particle Weapons. (a) Each frame of
animation, each particle separately inputs the position (p

x

, p
z

) and distance
(d

c

) from where it was initially fired into the CPPN (p
y

is ignored because
the game is situated entirely on the y = 0 plane). (b) The CPPN is activated
and particle velocity (v

x

, v
z

) and color (r, g, b) are obtained from CPPN
outputs. This method provides GAR with smooth particle animations and a
wide variety of possible evolved weapons.

weapon population. In single-player GAR, the weapon pop-
ulation is only the three weapons the player currently holds.
In multi-player GAR, the weapon population includes the
weapons currently held by all players. Thus single-player
evolution is to some extent greedy; however, it is not equiv-
alent to a normal evolutionary algorithm with a population
of three because the player encounters a significant number
of weapon previews in addition to the weapons in the ship’s
current arsenal. Therefore, the player is in effect judging such
previews by taking them or not. Furthermore, the spawning
pool ensures a diverse set of jumping-off points are injected
at regular intervals. As results in this paper show, the net
effect is that a single player can genuinely discover a diverse
array of highly specialized and effective weapons.
The roulette method, based on weapon fitness, decides

which weapon reproduces. Figure 4 illustrates weapon evo-
lution in GAR with two genealogies of related weapons.

D. Starter Weapons and the Spawning Pool
When the game begins players have no history of weapon

preference. One possible policy is to initially give players
three random weapons. However, such randomization could
cause new players to receive three undesirable weapons.

A better solution is for players to begin the game with
a predefined set of starter weapons. The starter weapons
in GAR (1) shoot only in a straight line, and (2) are not
eligible to reproduce during evolution. Thus, new players
are guaranteed to begin with viable weapons.
Because starter weapons cannot reproduce and players

begin the game with only starter weapons, a method is
needed to start evolution. For this purpose, the spawning pool
is a diverse collection of good weapons evolved by the game
developers. If cgNEAT selects a starter weapon to reproduce
because it is fired often, a random spawning pool weapon is
spawned instead. The advantages of the spawning pool are
(1) it jump starts evolution at the beginning of the game and
(2) it enables developers to influence what weapons players
will see early on, which is a critical time to make a good first
impression on players. The spawning pool can also serve as a
hall of fame, to which popular weapons are retired, possibly
reappearing later in game.
The next section describes the experience of weapon

evolution in the game and presents examples of weapons
evolved by players.

V. PLAYING GAR
The aim of the experiment in this section is to determine

whether GAR can produce a convincing variety of weapons
both tactically and aesthetically. To investigate the creativity
of GAR in single-player mode, a group of ten test players
piloted space ships in separate games for at least one hour
each. The results in this section (including figure 5) are
from these test sessions. The main result is that players
indeed discovered a variety of genuinely unique weapons
with compelling tactical implications and aesthetics.
As the weapons showcased in this section will show, the

gameplay implications of evolved content sometimes seem
intentional, as if designed purposely to create a specific
capability. Thus it is important to keep in mind that all the
weapons are entirely invented by the game itself with no
forethought by the game creators. In many cases powerful
guns were invented that were unlike anything the developers
had seen or imagined before. They often exhibit both appeal-
ing tactical and aesthetic (through changing color patterns)
qualities. Yet of course these guns are not the result of
random luck either; just as in other evolutionary algorithms,
they result from selection pressure, which is wrought by the
preferences of the player in GAR. In this way, GAR is a
credible demonstration of the potential of this approach.
In GAR it is possible for player projectiles to intercept

enemy projectiles. Therefore, several key tactical trade-offs
are explored by evolution. Slow projectiles make it easier
to block incoming fire whereas fast projectiles are easier to
aim at distant enemies. Weapons with a wide spread are
more effective at blocking incoming projectiles; however,
concentrated patterns more effectively destroy distant targets
quickly. Hybrid weapons with variable spread pattern and
speed over time evolve as well. Yet these tactical principles
are only the beginning. In fact, figure 5 presents a sample
of the wide range of generated weapons and describes some

Thursday, September 5, 13



Weapon evolution

(a) (b) (c)

(d) (e) (f)
Fig. 4. Weapon Evolution Examples. As weapons evolve over the course of the game, players are likely to find weapons with qualities similar to those
they favored in the past. In this example from actual gameplay, the player often fired a spread weapon (a). Later in the game, new spread gun variations
(b,c) evolved. Another interesting spread gun (d) fires two slower-firing outer projectiles and a fast inner projectile. Later descendants of this weapon (e,f)
exaggerated the speed difference between the inner and outer projectiles, diversified the color pattern, and modified the spread width. These examples
illustrate how cgNEAT evolves novel content based on past user preferences.

of their tactical implications. To highlight the creativity of
cgNEAT, we have assigned descriptive names to each such
gun to help to more easily appreciate their concept. Two
especially interesting evolved weapon types are wallmakers
(figure 5j,k), which literally create a wall of particles in
front of the player, and tunnelmakers (figure 5h,l), which
create a line of particles on either side of the player.
Both weapon types are defense-oriented, enabling players to
switch between them and more offense-oriented weapons, as
the tactical situation dictates. Most importantly, the authors
had never conceived of such guns, yet cgNEAT invented
them. These examples demonstrate that cgNEAT evolves
unique and tactically diverse weapons as the game is played.
Finally, it is important to point out that it does not take

long for players to begin to find effective weapons. As figure
5 shows, compelling weapons often arise within the first ten
generations (e.g. the tunnelmaker is from generation two).
Furthermore, weapons continue to evolve into novel forms
over dozens of generations, such as the blue ladder (figure
5f) from generation 42.
The next section discusses implications and other possible

applications of cgNEAT.

VI. DISCUSSION AND FUTURE WORK

GAR demonstrates that automatic content generation is a
viable new technology. The main application is in simulations
and games wherein the designers want users to be able to
discover and experience a continual stream of new content
beyond what the original artists and programmers are able
to provide. For players the main implication is a new kind

of experience in which not only is novelty a constant, but
the pursuit of novelty itself is an integral part of the game.
In fact, players informally indicated enjoying the consistent
satisfaction of novel discovery. For some game designers, this
loss of control will be viewed as a risky sacrifice; yet others
will see it for its potential, just as any new frontier opens
up an unknown world of possibilities. In fact, the interactive
evolutionary dynamic automatically creates a kind of implicit
game balance because, as soon as a player acquires a weapon
that tips the equilibrium, variants of that weapon become
available to other players in proportion to its use, thereby
continually balancing the game.
In addition to weapons, a wide variety of other game

content could potentially be generated by cgNEAT including
two-dimensional textures, three-dimensional models, other
types of particle effects, and programmable shader effects.
Video games that automatically generate their own content
(e.g. characters, clothing, weapons, houses, vehicles, music,
special effects, etc.) could keep players engaged much longer
in such a constantly evolving game world than in a static one.
Thus the potential future applications are broad.
At the time of this publication, GAR has recently

been released as a multiplayer Internet game. While
the single player results in this paper demonstrate the
promise of the idea, full-blown multiplayer evolution
on persistent servers can yield a significantly broader
explosion of content. Furthermore, the tactical implications
of human players fighting each other (instead of robotic
enemies) with a constantly changing arsenal promises
to produce a coevolutionary effect heretofore never

Thursday, September 5, 13



(a) Multispeed (7 gens) (b) Ultrawide (13 gens) (c) Three Prong (3 gens)

(d) Corkscrew (3 gens) (e) Yellow Ladder (35 gens) (f) Blue Ladder (42 gens)

(g) Double Bolt (12 gens) (h) Trident (2 gens) (i) Subatomic Heat (9 gens)

(j) Wallmaker (14 gens) (k) Double Wallmaker (15 gens) (l) Tunnelmaker (2 gens)
Fig. 5. Weapons Evolved During Gameplay. GAR players discovered many useful and aesthetically pleasing weapons. The number of generations of
reproduction taken to evolve each weapon is shown next to its name. The multispeed (a) fires two slow outer projectiles, which are useful for blocking
incoming enemy fire, and a fast center projectile for quickly striking distant targets. The ultrawide (b) and three prong (c) emit wide particle patterns that
are effective for fighting many enemies at once. The corkscrew (d) emits a pattern that is initially wide, for blocking, but later converges for concentrated
damage at a distance. Two version of the ladder gun (e,f) fire a wide wave-like pattern that can swivel around obstacles like asteroids. The double bolt (g)
demonstrates that weapons similar to those in typical space shooters can evolve. The trident (h) launches a single projectile forward and two perpendicular
projectiles that can block enemy fire from the sides. Subatomic heat (i) fires a chaotic multi-colored stream resembling bouncing subatomic particles. Two
types of wallmaker (j,k) literally create defensive walls of particles in front the player. The tunnelmaker (l) creates a defensive line of particles as well, but
on both sides of the player, yielding a defensive sheath. These results demonstrate the ability of cgNEAT to generate a tactically and aesthetically diverse
and genuinely useful array of weapons. Furthermore, useful weapons appear in early generation and continue to elaborate over successive generations.

Thursday, September 5, 13


